Prolonging the Lifetime of Wireless Sensor Network Via Multihop Clustering

  • Ying Qian
  • Jinfang Zhou
  • Liping Qian
  • Kangsheng Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4003)


Wireless nodes in sensor network detect surrounding events and then deliver the sensed information to a base station. Organizing these sensors into clusters enables efficient utilization of the limited network resources. Many clustering algorithms have been proposed such as LEACH, HEED, GAF and so on. While LEACH has many excellent features such as highly adaptive, self-configuring cluster formation, application-specific data aggregation, etc., it does not scale well when the network size or coverage increases. In this paper, the Enhanced Multihop Clustering Algorithm (EMCA) is proposed which utilizes multihop links for both intra-cluster and inter-cluster communication. To model the energy consumption more accurately, each cluster is modeled as a Voronoi Cell instead of a circle. The optimal parameter values are determined to minimize the total energy consumption so as to prolonging the lifetime of the whole network. Numerical results show that when both LEACH and EMCA operate with optimal parameter values, the total energy consumption of EMCA is much smaller than that of LEACH. Moreover, EMCA scales much well when the network scale increases, which proves that EMCA is highly scalable and is especially suitable for relatively large-scale wireless sensor networks.


Sensor Network Sensor Node Cluster Algorithm Wireless Sensor Network Medium Access Control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bharathidasan, A., Ponduru, V.A.S.: Sensor networks: an overview (2003)Google Scholar
  2. 2.
    LanWang, X.Y.: A survey of energy saving mechanisms in sensor networks (2005)Google Scholar
  3. 3.
    Pham, T., Kim, E.J., Moh, M.: On data aggregation quality and energy efficiency of wireless sensor network protocols - extended summary. In: Proc. BROADNETS 2004, pp. 730–732 (2004)Google Scholar
  4. 4.
    Mhatre, V., Rosenberg, C.: Homogeneous vs heterogeneous clustered sensor networks: a comparative study. In: Proc. ICC 2004, vol. 6, pp. 3646–3651 (2004)Google Scholar
  5. 5.
    Ho, S., Su, X.: CuMPE: Cluster-management and power-efficient protocol for wireless sensor networks. In: Proc. ITRE 2005, pp. 60–67 (2005)Google Scholar
  6. 6.
    Selvakennedy, S., Sinnappan Sinnappan, S.: A configurable time-controlled clustering algorithm for wireless sensor networks. In: Proc. ICPADS 2005, vol. 2, pp. 368–372 (2005)Google Scholar
  7. 7.
    Bandyopadhyay, S., Coyle, E.: An energy efficient hierarchical clustering algorithm for wireless sensor networks. In: Proc. INFOCOM 2003, vol. 3, pp. 1713–1723 (2003)Google Scholar
  8. 8.
    Foss, S.G., Zuyev, S.: On a voronoi aggregative process related to a bivariate poisson process. Advances in Appl. Probability 28, 965–981 (1996)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Heinzelman, W., Chandrakasan, A., Balakrishnan, H.: An application-specific protocol architecture for wireless microsensor networks. IEEE Trans. Wireless Comm. 1, 660–670 (2002)CrossRefGoogle Scholar
  10. 10.
    Handy, M., Haase, M., Timmermann, D.: Low energy adaptive clustering hierarchy with deterministic cluster-head selection. In: Proc. MWCN 2002, pp. 368–372 (2002)Google Scholar
  11. 11.
    Manjeshwar, A., Agrawal, D.: TEEN: a routing protocol for enhanced efficiency in wireless sensor networks. In: Proc. IPDPS 2001, pp. 2009–2015 (2001)Google Scholar
  12. 12.
    Zhao, L., Liang, X.H.Q.: Energy-efficient self-organization for wireless sensor networks: a fully distributed approach. In: GLOBECOM 2004, vol. 5, pp. 2728–2732. IEEE, Los Alamitos (2004)Google Scholar
  13. 13.
    Ye, M., Li, C., Chen, G., Wu, J.: EECS: an energy efficient clustering scheme in wireless sensor networks. In: Proc. IPCCC 2005, pp. 535–540 (2005)Google Scholar
  14. 14.
    Qin, M., Zimmermann, R.: An energy-efficient voting-based clustering algorithm for sensor networks. In: Proc. SNPD/SAWN 2005, pp. 444–451 (2005)Google Scholar
  15. 15.
    Younis, O., Fahmy, S.: Distributed clustering in ad-hoc sensor networks: a hybrid, energy-efficient approach. In: Proc. INFOCOM 2004, vol. 1 (2004)Google Scholar
  16. 16.
    Soro, S., Heinzelman, W.: Prolonging the lifetime of wireless sensor networks via unequal clustering. In: Proc. IPDPS 2005 (2005)Google Scholar
  17. 17.
    Smaragdakis, G., Matta, I., Bestavros, A.: SEP: A stable election protocol for clustered heterogeneous wireless sensor networks. In: Proc. SANPA 2004 (2004)Google Scholar
  18. 18.
    Wang, Y., Zhao, Q., Zheng, D.: Energy-driven adaptive clustering data collection protocol in wireless sensor networks. In: Proc. ICIMA 2004, pp. 599–604 (2004)Google Scholar
  19. 19.
    Gupta, G., Younis, M.: Performance evaluation of load-balanced clustering of wireless sensor networks. In: Proc. ICT 2003, vol. 2, pp. 1577–1583 (2003)Google Scholar
  20. 20.
    Mhatre, V., Rosenberg, C., Kofman, et al.: A minimum cost heterogeneous sensor network with a lifetime constraint. IEEE Trans. on Mobile Comput. 4, 4–15 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ying Qian
    • 1
  • Jinfang Zhou
    • 1
  • Liping Qian
    • 1
  • Kangsheng Chen
    • 1
  1. 1.Department of Information Science & Electronics EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations