On the Solution of Skew-Symmetric Shifted Linear Systems

  • T. Politi
  • A. Pugliese
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3994)


In this paper we consider the problem of solving a sequence of linear systems with coefficient matrix A α =I + αA (or A α =αI + A), where α is a real paramater and A is skew-symmetric matrix. We propose to solve this problem exploiting the structure of the Schur decomposition of the skew-symmetric matrix and computing the Singular Value Decomposition of a bidiagonal matrix of halved size.


Linear System Krylov Subspace Symmetric Linear System Bidiagonal Matrix Complex Symmetric Linear System 


  1. 1.
    Bai, Z., Golub, G., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matr. Anal. 24(3), 603–626 (2003)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Benzi, M., Bertaccini, D.: Approximate inverse preconditioning for shifted linear systems. BIT 43, 231–244 (2003)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bertaccini, D.: Efficient solvers for sequences of complex symmetric linear systems. ETNA 18, 49–64 (2004)MATHMathSciNetGoogle Scholar
  4. 4.
    Chen, J.B., Munthe-Kaas, H., Qin, M.Z.: Square-conservative schemes for a class of evolution equations using Lie group methods. SIAM J. Num. Anal. 39(6), 2164–2178 (2002)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Del Buono, N., Lopez, L., Peluso, R.: Computation of the exponential of large sparse skew-symmetric matrices. SIAM J. Sci. Comp. 27, 278–293 (2005)MATHCrossRefGoogle Scholar
  6. 6.
    Golub, G.H., Van Loan, C.F.: Matrix Computation. The John Hopkins Univ. Press, Baltimore (1996)Google Scholar
  7. 7.
    Saad, Y.: Analysis of some Krylov subspace approximation to the matrix exponential operator. SIAM J. Numer. Anal. 29(1), 209–228 (1992)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Zabusky, N.J., Kruskal, M.D.: Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • T. Politi
    • 1
  • A. Pugliese
    • 2
  1. 1.Dipartimento di MatematicaPolitecnico di BariBariItaly
  2. 2.School of MathematicsGeorgia Institute of TechnologyAtlantaU.S.A.

Personalised recommendations