Advertisement

Piecewise Constant Perturbation Methods for the Multichannel Schrödinger Equation

  • Veerle Ledoux
  • Marnix Van Daele
  • Guido Vanden Berghe
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3994)

Abstract

The CPM{P,N} methods form a class of methods specially devised for the propagation of the solution of the one-dimensional Schrödinger equation. Using these CPM{P,N} methods in a shooting procedure, eigenvalues of the boundary value problem are obtained to very high precision. Some recent advances allowed the generalization of the CPM{P,N} methods to systems of coupled Schrödinger equations. Also for these generalised CPM{P,N} methods a shooting procedure can be formulated, solving the multichannel bound state problem.

Keywords

Couple Equation Integration Interval Couple Channel Reference Equation Exact Eigenvalue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Allison, A.C.: The numerical solution of coupled differential equations arising from the Schrödinger equation. J. Comput. Phys. 6, 378–391 (1970)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Allison, A.C.: The numerical solution of the equations of molecular-scattering. Adv. At. Mol. Phys. 25, 323–341 (1988)CrossRefGoogle Scholar
  3. 3.
    Cooley, J.W.: An Improved Eigenvalue Corrector Formula for Solving the Schrödinger Equation for Central Fields. Math. Comput. 15, 363–374 (1961)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Gordon, R.G.: New Method for Constructing Wavefunctions for Bound States and Scattering. J. Chem. Phys. 51, 14–25 (1969)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Hutson, J.M.: Coupled channel methods for solving the bound-state Schrödinger equation. Comput. Phys. Commun. 84, 1–18 (1994)MATHCrossRefGoogle Scholar
  6. 6.
    Ixaru, L.G.: Numerical Methods for Differential Equations and Applications. Reidel, Dordrecht (1984)MATHGoogle Scholar
  7. 7.
    Ixaru, L.G., De Meyer, H., Vanden Berghe, G.: CP methods for the Schrödinger equation, revisited. J. Comput. Appl. Math. 88, 289–314 (1997)CrossRefGoogle Scholar
  8. 8.
    Ixaru, L.G., De Meyer, H., Vanden Berghe, G.: SLCPM12 - A program for solving regular Sturm-Liouville problems. Comp. Phys. Comm. 118, 259–277 (1999)MATHCrossRefGoogle Scholar
  9. 9.
    Ixaru, L.G.: LILIX - A package for the solution of the coupled channel Schrödinger equation. Comput. Phys. Commun. 147, 834–852 (2002)MATHCrossRefGoogle Scholar
  10. 10.
    Johnson, B.R.: Renormalized Numerov method applied to calculating bound-states of coupled-channel Schrödinger equation. J. Chem. Phys. 69, 4678–4688 (1978)CrossRefGoogle Scholar
  11. 11.
    Ledoux, V., Van Daele, M., Vanden Berghe, G.: CP methods of higher order for Sturm-Liouville and Schrödinger equations. Comput. Phys. Commun. 162, 151–165 (2004)CrossRefMATHGoogle Scholar
  12. 12.
    Ledoux, V., Van Daele, M., Vanden Berghe, G.: CPM{P,N} methods extended for the solution of coupled channel Schrödinger equations. Comput. Phys. Commun. 174, 357–370 (2006)CrossRefMATHGoogle Scholar
  13. 13.
    Ledoux, V., Van Daele, M., Vanden Berghe, G.: MATSLISE: A MATLAB package for the Numerical Solution of Sturm-Liouville and Schrödinger equations. ACM Trans. Math. Softw. 31 (2005)Google Scholar
  14. 14.
    Levine, R.D.: Adiabatic approximation for nonreactive subexcitation molecular collisions. J. Chem. Phys. 49, 51 (1968)CrossRefGoogle Scholar
  15. 15.
    Rykaczewski, K., Batchelder, J.C., Bingham, C.R., et al.: Proton emitters 140Ho and 141Ho: Probing the structure of unbound Nilsson orbitals. Phys. Rev. C. 60, 011301 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Veerle Ledoux
    • 1
  • Marnix Van Daele
    • 1
  • Guido Vanden Berghe
    • 1
  1. 1.Vakgroep Toegepaste Wiskunde en InformaticaGhent UniversityGentBelgium

Personalised recommendations