Piecewise Constant Perturbation Methods for the Multichannel Schrödinger Equation

  • Veerle Ledoux
  • Marnix Van Daele
  • Guido Vanden Berghe
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3994)


The CPM{P,N} methods form a class of methods specially devised for the propagation of the solution of the one-dimensional Schrödinger equation. Using these CPM{P,N} methods in a shooting procedure, eigenvalues of the boundary value problem are obtained to very high precision. Some recent advances allowed the generalization of the CPM{P,N} methods to systems of coupled Schrödinger equations. Also for these generalised CPM{P,N} methods a shooting procedure can be formulated, solving the multichannel bound state problem.


Couple Equation Integration Interval Couple Channel Reference Equation Exact Eigenvalue 


  1. 1.
    Allison, A.C.: The numerical solution of coupled differential equations arising from the Schrödinger equation. J. Comput. Phys. 6, 378–391 (1970)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Allison, A.C.: The numerical solution of the equations of molecular-scattering. Adv. At. Mol. Phys. 25, 323–341 (1988)CrossRefGoogle Scholar
  3. 3.
    Cooley, J.W.: An Improved Eigenvalue Corrector Formula for Solving the Schrödinger Equation for Central Fields. Math. Comput. 15, 363–374 (1961)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Gordon, R.G.: New Method for Constructing Wavefunctions for Bound States and Scattering. J. Chem. Phys. 51, 14–25 (1969)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Hutson, J.M.: Coupled channel methods for solving the bound-state Schrödinger equation. Comput. Phys. Commun. 84, 1–18 (1994)MATHCrossRefGoogle Scholar
  6. 6.
    Ixaru, L.G.: Numerical Methods for Differential Equations and Applications. Reidel, Dordrecht (1984)MATHGoogle Scholar
  7. 7.
    Ixaru, L.G., De Meyer, H., Vanden Berghe, G.: CP methods for the Schrödinger equation, revisited. J. Comput. Appl. Math. 88, 289–314 (1997)CrossRefGoogle Scholar
  8. 8.
    Ixaru, L.G., De Meyer, H., Vanden Berghe, G.: SLCPM12 - A program for solving regular Sturm-Liouville problems. Comp. Phys. Comm. 118, 259–277 (1999)MATHCrossRefGoogle Scholar
  9. 9.
    Ixaru, L.G.: LILIX - A package for the solution of the coupled channel Schrödinger equation. Comput. Phys. Commun. 147, 834–852 (2002)MATHCrossRefGoogle Scholar
  10. 10.
    Johnson, B.R.: Renormalized Numerov method applied to calculating bound-states of coupled-channel Schrödinger equation. J. Chem. Phys. 69, 4678–4688 (1978)CrossRefGoogle Scholar
  11. 11.
    Ledoux, V., Van Daele, M., Vanden Berghe, G.: CP methods of higher order for Sturm-Liouville and Schrödinger equations. Comput. Phys. Commun. 162, 151–165 (2004)CrossRefMATHGoogle Scholar
  12. 12.
    Ledoux, V., Van Daele, M., Vanden Berghe, G.: CPM{P,N} methods extended for the solution of coupled channel Schrödinger equations. Comput. Phys. Commun. 174, 357–370 (2006)CrossRefMATHGoogle Scholar
  13. 13.
    Ledoux, V., Van Daele, M., Vanden Berghe, G.: MATSLISE: A MATLAB package for the Numerical Solution of Sturm-Liouville and Schrödinger equations. ACM Trans. Math. Softw. 31 (2005)Google Scholar
  14. 14.
    Levine, R.D.: Adiabatic approximation for nonreactive subexcitation molecular collisions. J. Chem. Phys. 49, 51 (1968)CrossRefGoogle Scholar
  15. 15.
    Rykaczewski, K., Batchelder, J.C., Bingham, C.R., et al.: Proton emitters 140Ho and 141Ho: Probing the structure of unbound Nilsson orbitals. Phys. Rev. C. 60, 011301 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Veerle Ledoux
    • 1
  • Marnix Van Daele
    • 1
  • Guido Vanden Berghe
    • 1
  1. 1.Vakgroep Toegepaste Wiskunde en InformaticaGhent UniversityGentBelgium

Personalised recommendations