A General Family of Two Step Runge-Kutta-Nyström Methods for y = f(x,y) Based on Algebraic Polynomials

  • Beatrice Paternoster
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3994)


We consider the new family of two step Runge–Kutta– Nyström methods for the numerical integration of y =f(x,y), which provide approximation for the solution and its first derivative at the step point, and depend on the stage values at two consecutive step points. We derive the conditions to obtain methods within this family, which integrate algebraic polynomials exactly, describe a constructive technique and analyze the order of the resulting method.


Collocation Method Kutta Method Trigonometric Polynomial Algebraic Polynomial Oscillatory Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Albrecht, P.: Elements of a general theory of composite integration methods. Appl. Math. Comp. 31, 1–17 (1989)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Albrecht, P.: A new theoretical approach to RK methods. SIAM J. Numer. Anal. 24(2), 391–406 (1987)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Butcher, J.C.: The Numerical Analysis of Ordinary Differential Equations: Runge–Kutta and General Linear Methods. Wiley, Chichester (1987)MATHGoogle Scholar
  4. 4.
    Cafaro, M., Paternoster, B.: Analysis of stability of rational approximations through computer algebra. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) Computer Algebra in Scientific Computing CASC 1999, pp. 25–36. Springer, Heidelberg (1999)Google Scholar
  5. 5.
    Coleman, J.P., Ixaru, L.G.: P–stability and exponential–fitting methods for y = f(x,y). IMA J. Numer. Anal. 16, 179–199 (1996)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Coleman, J.P.: Order conditions for a class of two–step methods for y = f(x,y). IMA J. Num. Anal. 23, 197–220 (2003)MATHCrossRefGoogle Scholar
  7. 7.
    Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential–Algebraic Problems. Springer, Berlin (1991)MATHGoogle Scholar
  8. 8.
    Ixaru, L.G., Paternoster, B.: A conditionally P-stable fourth order exponential-fitting method for y”=f(x,y). J. Comput. Appl. Math. 106, 87–98 (1999)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Jackiewicz, Z., Renaut, R., Feldstein, A.: Two–step Runge–Kutta methods. SIAM J. Numer. Anal. 28(4), 1165–1182 (1991)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Lambert, J.D.: Numerical methods for ordinary differential systems: The initial value problem. Wiley, Chichester (1991)MATHGoogle Scholar
  11. 11.
    Paternoster, B.: Runge–Kutta(–Nyström) methods for ODEs with periodic solutions based on trigonometric polynomials. Appl. Numer. Math. 2–4(28), 401–412 (1998)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Paternoster, B.: A phase–fitted collocation–based Runge–Kutta–Nyström method. Appl. Numer. Math. 35(4), 239–355 (2000)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Paternoster, B.: General Two-Step Runge-Kutta methods based on algebraic and trigonometric polynomials. Int. J. Appl. Math. 6(4), 347–362 (2001)MATHMathSciNetGoogle Scholar
  14. 14.
    Paternoster, B.: Two step Runge-Kutta-Nyström methods for y = f(x,y) and P–stability. In: Sloot, P.M.A., Tan, C.J.K., Dongarra, J., Hoekstra, A.G. (eds.) ICCS-ComputSci 2002. LNCS, vol. 2331, pp. 459–466. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Petzold, L.R., Jay, L.O., Yen, J.: Numerical solution of highly oscillatory ordinary differential equations. Acta Numerica, 437–483 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Beatrice Paternoster
    • 1
  1. 1.Dipartimento di Matematica e InformaticaUniversitá di SalernoItaly

Personalised recommendations