Constructing a P2P-Based High Performance Computing Platform

  • Hai Jin
  • Fei Luo
  • Xiaofei Liao
  • Qin Zhang
  • Hao Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3994)


The construction for a P2P-based high performance computing platform (P2HP) is presented to address parallel problems in this paper. P2HP utilizes idle computers in the Internet with great scalability to form an enormous computing capability for scientific supercomputing and volunteers form autonomous unstructured P2P network domains. The configuration of P2HP is easy and a programming model is provided. Its applications involve a large range of problems, and a benchmark is applied to evaluate its performance.


Pairwise Alignment High Throughput Computing Autonomous Domain Idle Cycle Attached Worker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bell, G., Gray, J.: What’s next in high-performance computing. Communications of the ACM 45(2), 91–95 (2002)CrossRefGoogle Scholar
  2. 2.
    Raman, R., Livny, M., Solomon, M.: Matchmaking: distributed resource management for high throughput computing. In: Proceedings of the Seventh IEEE International Symposium on High Performance Distribute Computing, HPDC 1998 (1998)Google Scholar
  3. 3.
    Jin, H., Luo, F., Zhang, Q., Liao, X., Zhang, H.: OMP: a one-sided message passing programming model for P2HP. In: Daydé, M., Palma, J.M.L.M., Coutinho, Á.L.G.A., Pacitti, E., Lopes, J.C. (eds.) VECPAR 2006. LNCS, vol. 4395. Springer, Heidelberg (2007)Google Scholar
  4. 4.
    Lo, V., Zappala, D., Zhou, D., Liu, Y., Zhao, S.: Cluster computing on the fly: P2P scheduling of idle cycles in the Internet. In: Voelker, G.M., Shenker, S. (eds.) IPTPS 2004. LNCS, vol. 3279, pp. 227–236. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Anderson, D.P.: BOINC: A system for public-resource computing and storage. In: Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing (GRID 2004), pp. 4–10 (2004)Google Scholar
  6. 6.
    Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: SETI@home: An experiment in public-resource computing. Communications of the ACM 45(11), 56–61 (2002)CrossRefGoogle Scholar
  7. 7.
    Pande, V.S., Baker, I., Chapman, J., Elmer, S.P., Khaliq, S., Larson, S.M., Rhee, Y.M., Shirts, M.R., Snow, C.D., Sorin, E.J., Zagrovic, B.: Atomistic Protein Folding Simulations on the Submillisecond Time Scale Using Worldwide Distributed Computing. Biopolymers 68, 91–109 (2003)CrossRefGoogle Scholar
  8. 8.
    Taufer, M., An, C., Kerstens, A., Brooks, C.L.: Predictor@Home: A ‘protein structure prediction supercomputer’ based on public-resource computing. In: Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2005 (2005)Google Scholar
  9. 9.
    Sato, M., Boku, T., Takahashi, D.: OmniRPC: A grid RPC system for parallel programming in cluster and grid environment. In: Proceedings of 3rd International Symposium on Cluster Computing and the Grid (CCGrid 2003), pp. 206–213 (2003)Google Scholar
  10. 10.
    Fedak, G., Germain, C., Neri, V., Cappello, F.: XtremWeb: A generic global computing system. In: Proceedings of the 1st IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid 2001), pp. 582–587 (2001)Google Scholar
  11. 11.
    Andrade, N., Cirne, W., Brasileiro, F., Roisenberg, P.: OurGrid: an approach to easily assemble grids with equitable resource sharing. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003. LNCS, vol. 2862, pp. 61–86. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hai Jin
    • 1
  • Fei Luo
    • 1
  • Xiaofei Liao
    • 1
  • Qin Zhang
    • 1
  • Hao Zhang
    • 1
  1. 1.Cluster and Grid Computing LaboratoryHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations