A GPU Implementation of Level Set Multiview Stereo

  • Patrick Labatut
  • Renaud Keriven
  • Jean-Philippe Pons
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3994)


Variational methods that evolve surfaces according to PDEs have been quite successful for solving the multiview stereo shape reconstruction problem since [1]. However just like every other algorithm that tackles this problem, their running time is quite high (from dozens of minutes to several hours). Fortunately graphics hardware has shown a great potential for speeding up many low-level computer vision tasks. In this paper, we present the analysis of the different bottlenecks of the original implementation of [2] and show how to efficently port it to GPUs using well-known GPGPU techniques. We finally present some results and discuss the improvements.


Input Stream Graphic Card Graphic Hardware Shape Reconstruction Computer Vision Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Faugeras, O., Keriven, R.: Complete dense stereovision using level set methods. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 379–393. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Pons, J.P., Keriven, R., Faugeras, O.: Modelling Dynamic Scenes by Registering Multi-View Image Sequences. In: International Conference on Computer Vision and Pattern Recognition, 2nd edn., pp. 822–827 (2005)Google Scholar
  3. 3.
    Kutulakos, K., Seitz, S.: A Theory of Shape by Space Carving. International Journal of Computer Vision 38(3), 199–218 (2000)MATHCrossRefGoogle Scholar
  4. 4.
    Duan, Y., Yang, L., Qin, H., Samaras, D.: Shape Reconstruction from 3D and 2D Data Using PDE-based Deformable Surfaces. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 238–251. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E., Purcell, T.J.: A Survey of General-Purpose Computation on Graphics Hardware. In: Eurographics 2005, State of the Art Reports, pp. 21–51 (2005)Google Scholar
  6. 6.
    Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M., Hanrahan, P.: Brook for GPUs: Stream Computing on Graphics Hardware. ACM Transactions on Graphics 23(3), 777–786 (2004)CrossRefGoogle Scholar
  7. 7.
    Yang, R., Pollefeys, M.: Multi-Resolution Real-Time Stereo on Commodity Graphics Hardware. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 211–218 (2003)Google Scholar
  8. 8.
    Geys, I., Koninckx, T.P., Gool, L.J.V.: Fast Interpolated Cameras by Combining a GPU based Plane Sweep with a Max-Flow Regularisation Algorithm. In: International Symposium on 3D Data Processing, Visualization and Transmission, pp. 534–541 (2004)Google Scholar
  9. 9.
    Gong, M., Yang, Y.H.: Near Real-Time Reliable Stereo Matching Using Programmable Graphics Hardware. In: IEEE International Conference on Computer Vision and Pattern Recognition (2005)Google Scholar
  10. 10.
    Rumpf, M., Strzodka, R.: Level Set Segmentation in Graphics Hardware. In: IEEE International Conference on Image Processing, vol. 3, pp. 1103–1106 (2001)Google Scholar
  11. 11.
    Lefohn, A.E., Kniss, J.M., Hansen, C.D., Whitaker, R.T.: A Streaming Narrow-Band Algorithm: Interactive Deformation and Visualization of Level Sets. IEEE Transactions on Visualization and Computer Graphics 10(40), 422–433 (2004)CrossRefGoogle Scholar
  12. 12.
    Hermosillo, G., Chefd’hotel, C., Faugeras, O.: Variational Methods for Multimodal Image Matching. International Journal of Computer Vision 50(3), 329–343 (2002)MATHCrossRefGoogle Scholar
  13. 13.
    Osher, S., Sethian, J.A.: Fronts Propagating with Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations. Journal of Computational Physics 79(1), 12–49 (1988)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Adalsteinsson, D., Sethian, J.A.: A Fast Level Set Method for Propagating Interfaces. Journal of Computational Physics 118(2), 269–277 (1995)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Deriche, R.: Fast Algorithms for Low-Level Vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 1(12), 78–88 (1990)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Patrick Labatut
    • 1
  • Renaud Keriven
    • 2
  • Jean-Philippe Pons
    • 2
  1. 1.Département d’InformatiqueÉcole normale supérieureParis Cedex 05France
  2. 2.CERTISÉcole Nationale des Ponts et ChausséesMarne-la-Vallée Cedex 2France

Personalised recommendations