Efficient Population Diversity Handling Genetic Algorithm for QoS-Aware Web Services Selection

  • Chengwen Zhang
  • Sen Su
  • Junliang Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3994)


To maximize user satisfaction during composition of web services, a genetic algorithm with population diversity handling is presented for Quality of Service(QoS)-aware web services selection. In this algorithm, the fitness function, the selection mechanism of the population as well as the competition mechanism of the population are represented. The population diversity and population fitness are used as the primary criteria of the population evolution. By competing between the current population and the historical optimal population, the whole population evolution can be done on the basis of the whole population evolution principle of the biologic genetic theory. Prematurity is overcome effectively. Experiments on QoS-aware web services selection show that the genetic algorithm with population diversity handling can get more excellent composite service plan than the standard genetic algorithm.


Genetic Algorithm Service Composition Information Entropy Composite Service Standard Genetic Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    W3C.Web Services Architecture (2004), http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
  2. 2.
    Curbera, F., Khalaf, R., Mukhi, N., et al.: The Next Step in Web Services. Commnincation of the ACM 46(10), 29–34 (2003)CrossRefGoogle Scholar
  3. 3.
    Milanovic, N., Malek, M.: Current Solutions for Web Service Composition. IEEE Internet Computing, 51–59 (2004)Google Scholar
  4. 4.
    Orriens, B., Yang, J., Papazoglou, M.P.: Model Driven Service Composition. In: The First International Conference on Service Oriented Computing, ICSOC 2003 (2003)Google Scholar
  5. 5.
    Menascé, D.A.: QoS Issues in Web Services. IEEE Internet Computing 6(6), 72–75 (2002)CrossRefGoogle Scholar
  6. 6.
    Menascé, D.A.: Composing Web Services: A QoS View. IEEE Internet Computing, 88–90 (2004)Google Scholar
  7. 7.
    ISO 8402, Quality VocabularyGoogle Scholar
  8. 8.
    ITU-T Recommendation E.800, Terms and Definitions Related to Quality of Service and Network Performance Including Dependability (1994) Google Scholar
  9. 9.
    Tian, M., Gramm, A., Ritter, H., Schiller, J.: Efficient Selection and Monitoring of QoS-Aware Web Services with the WS-QoS Framework. In: IEEE/WIC/ACM International Conference on Web Intelligence, WI 2004 (2004)Google Scholar
  10. 10.
    Soydan Bilgin, A., Singh, M.P.: A DAML-Based Repository for QoS-Aware Semantic Web Service Selection. In: Proceedings of the IEEE International Conference on Web Services, ICWS 2004 (2004)Google Scholar
  11. 11.
    Zhou, C., Chia, L.-T., Lee, B.-S.: DAML-QoS Ontology for Web Services. In: IEEE International Conference on Web Services, ICWS 2004 (2004)Google Scholar
  12. 12.
    Srinivas, M., Patnaik, L.M.: Genetic Algorithm: a Survey, pp. 17–26. IEEE, Los Alamitos (1994)Google Scholar
  13. 13.
    Chun, J.S., Kim, M.K., Jung, H.K.: Shape Optimization of Electromagnetic Devices Using Immune Algorithm. IEEE Trans. on Magnetics 33(2), 1876–1879 (1997)CrossRefGoogle Scholar
  14. 14.
    Tsujimura, Y., Gen, M.: Entropy-Based Genetic Algorithm for Solving TSP. In: The Second International Conference on Knowledge-Based Intelligent Electronic Systems, 285–290 (1998)Google Scholar
  15. 15.
    Liu, Y., Ngu, A.H., Zeng, L.: QoS Computation and Policing in Dynamic Web Service Selection. In: Proceedings of the 13th International Conference on World Wide Web (WWW), pp. 66–73. ACM Press, New York (2004)Google Scholar
  16. 16.
    Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality Driven Web Services Composition. In: Proc. 12th Int’l. Conf. World Wide Web, WWW (2003)Google Scholar
  17. 17.
    Zeng, L., Benatallah, B., Ngu, A.H.H., et al.: QoS-Aware Middleware for Web Services Composition. IEEE Transactions on Software Engineering 30(5), 311–327 (2004)CrossRefGoogle Scholar
  18. 18.
    Zhang, L., Li, B., Chao, T., et al.: On Demand Web Services-Based Business Process Composition, pp. 4057–4064. IEEE, Los Alamitos (2003)Google Scholar
  19. 19.
    Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: A Lightweight Approach for QoS–Aware Service Composition. In: ICSOC (2004)Google Scholar
  20. 20.
    Ignacio, R., Jesús, G., Héctor, P., et al.: Statistical Analysis of the Main Parameters Involved in the Design of a Genetic Algorithm. IEEE Transactions on Systems, Man, and Cybernetics—Part C: Applications and Reviews 32(1), 31–37 (2002)CrossRefGoogle Scholar
  21. 21.
    Hinterding, R., Michalewicz, Z., Eiben, A.E.: Adaptation in Evolutionary Computation: a Survey. IEEE EC, 65–69 (1997)Google Scholar
  22. 22.
    Shimodaira, H.: DCGA: A Diversity Control Oriented Genetic Algorithm. In: The Ninth IEEE International Conference on Tools with Artificial Intelligence, pp. 367–374 (1997)Google Scholar
  23. 23.
    Wang, K.: A New Fuzzy Genetic Algorithm Based on Population Diversity. In: IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp. 108–112 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Chengwen Zhang
    • 1
  • Sen Su
    • 1
  • Junliang Chen
    • 1
  1. 1.State Key Lab of Networking and Switching TechnologyBeijing University of Posts & Telecommunications(BUPT)BeijingChina

Personalised recommendations