Automata Network Simulator Applied to the Epidemiology of Urban Dengue Fever

  • Henrique F. Gagliardi
  • Fabrício A. B. da Silva
  • Domingos Alves
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3993)


The main goal this paper is to describe a software simulating spatio-temporal Dengue epidemic spread based on the utilization of a generalized probabilistic cellular automata computational analysis as the dynamic model of spatial epidemiology. This epidemic spatial model permits to reproduce explicitly the interaction of two types of transmission mechanisms in terms of global and local variables, which in turn can be adjusted to simulate respectively the populational mobility and geographical neighborhood contacts. The resulting virtual laboratory was designed to run spatio-temporal simulation of the Dengue disease spreading based on local and global interactions among two distinct populations (humans and mosquitoes).


Cellular Automaton Cellular Automaton Cellular Automaton Model Visualization Module Probabilistic Cellular Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Paterson, S., Viney, M.E.: The interface between epidemiology and population genetics. Parasitology Today 16(12), 528 (2000)CrossRefGoogle Scholar
  2. 2.
    Alves, D., Hass, V., Caliri, A.: The predictive power of R0 in an epidemic probabilistic model. Journal of Biological Physics 29(1), 63 (2003)CrossRefGoogle Scholar
  3. 3.
    Focks, D.A., et al.: A simulation model of the epidemiology of urban dengue fever: Literature analysis, model development, preliminary validation, and samples of simulation results. American Journal of Tropical Medicine and Hygiene 53, 489–506 (1995)Google Scholar
  4. 4.
    Stefano, B., Fukś, H., Lawniczak, A.T.: Object-Oriented Implementation of CA/LGCA Modelling Applied To the Spread of Epidemics. In: Canadian Conference on Electrical and Computer Engineering, vol. 1, pp. 26–31. IEEE, Los Alamitos (2000)Google Scholar
  5. 5.
    Boccara, N., Cheong, K.: Automata Network SIR Models for Spread of Infectious Diseases in Populations of Moving Individuals. J. Phys. A: Math and Gen. 25, 2447 (2000)CrossRefGoogle Scholar
  6. 6.
    Watts, D.J., Strogatz, S.H.: The Collective Dynamics of ‘Small-World’ Networks. Nature 393, 440 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Henrique F. Gagliardi
    • 1
    • 3
  • Fabrício A. B. da Silva
    • 3
  • Domingos Alves
    • 1
    • 2
  1. 1.Laboratório de Computação Científica Aplicada à Saúde Coletiva (LCCASC)UNISANTOSSantosBrazil
  2. 2.Programa de Mestrado em Saúde ColetivaUNISANTOSSantosBrazil
  3. 3.Programa de Mestrado em InformáticaUNISANTOSSantosBrazil

Personalised recommendations