On Modeling and Analyzing Sparsely Networked Large-Scale Multi-agent Systems with Cellular and Graph Automata

  • Predrag T. Tošić
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3993)


Modeling, designing and analyzing large scale multi-agent systems (MAS) with anywhere from tens of thousands to millions of autonomous agents will require mathematical and computational theories and models substantially different from those underlying the study of small- to medium-scale MAS made of only dozens, or perhaps hundreds, of agents. In this paper, we study certain aspects of the global behavior of large ensembles of simple reactive agents. We do so by analyzing the collective dynamics of several related models of discrete complex systems based on cellular automata. We survey our recent results on dynamical properties of the complex systems of interest, and discuss some useful ways forward in modeling and analysis of large-scale MAS via appropriately modified versions of the classical cellular automata.


Boolean Function Cellular Automaton Multiagent System Cellular Automaton Cellular Automaton Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Barrett, C., Hunt III, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: Predecessor and Permutation Existence Problems for Sequential Dynamical Systems. Los Alamos National Laboratory Report, LA-UR-01-668 (2001)Google Scholar
  2. 2.
    Barrett, C.L., Hunt, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E., Tosic, P.T.: Gardens of Eden and Fixed Points in Sequential Dynamical Systems. In: Proc. AA DM-CCG, Discrete Math. & Theoretical Comp. Sci., pp. 95–110 (2001)Google Scholar
  3. 3.
    Barrett, C., Mortveit, H., Reidys, C.: Elements of a theory of simulation II: sequential dynamical systems. Appl. Math. & Comput. 107/2-3, 121–136 (2000)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Barrett, C., Mortveit, H., Reidys, C.: Elements of a theory of computer simulation III: equivalence of SDS. Appl. Math. & Comput. 122, 325–340 (2001)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Barrett, C., Reidys, C.: Elements of a theory of computer simulation I: sequential CA over random graphs. Applied Math. & Comput. 98, 241–259 (1999)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Beckman, R.J., et al.: TRANSIMS: Case Study. Dallas Ft-Worth. Los Alamos National Laboratory, LA UR 97-4502 (1999)Google Scholar
  7. 7.
    Floreen, P., Orponen, P.: On the Computational Complexity of Analyzing Hopfield Nets. Complex Systems 3, 577–587 (1989)MATHMathSciNetGoogle Scholar
  8. 8.
    Floreen, P., Orponen, P.: Complexity Issues in Discrete Hopfield Networks. NeuroCOLT Technical Report Series, NC-TR-94-009 (October 1994)Google Scholar
  9. 9.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness. W. H. Freeman and Co., San Francisco (1979)MATHGoogle Scholar
  10. 10.
    Goles, E., Martinez, S.: Neural and Automata Networks: Dynamical Behavior and Applications. Math. and Its Applications series, vol. 58. Kluwer, Dordrecht (1990)MATHGoogle Scholar
  11. 11.
    Goles, E., Martinez, S. (eds.): Cellular Automata and Complex Systems. Nonlinear Phenomena and Complex Systems series. Kluwer, Dordrecht (1999)MATHGoogle Scholar
  12. 12.
    Greenhill, C.: The Complexity of Counting Colourings and Independent Sets in Sparse Graphs and Hypergraphs. Comput. Complexity 9, 52–72 (2000)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Gutowitz, H. (ed.): Cellular Automata: Theory and Experiment. N. Holland, Amsterdam (1989)Google Scholar
  14. 14.
    Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Nat’l Academy Sci (USA) 79, 2554–2558 (1982)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Ingerson, T.E., Buvel, R.L.: Structure in asynchronous cellular automata. Physica D: Nonlinear Phenomena 10(1-2), 59–68 (1984)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Laubenbacher, R., Pareigis, B.: Finite Dynamical Systems. Technical report, Dept. of Mathematical Sciences, N. Mexico State Univ., Las Cruces (2000)Google Scholar
  17. 17.
    Mortveit, H., Reidys, C.: Discrete sequential dynamical systems. Discrete Mathematics 226(1-3), 281–295 (2001)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Roth, D.: On the Hardness of Approximate Reasoning. Artificial Intelligence 82, 273–302 (1996)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Tosic, P.: On Counting Fixed Point Configurations in Star Networks. In: APDCM Workshop within The 19th IEEE Int’l Parallel & Distributed Processing Symp. 2005 (2005); Proc. IEEE-IPDPS 2005 (CD-Rom)Google Scholar
  20. 20.
    Tosic, P.: On Complexity of Counting Fixed Point Configurations in Certain Classes of Graph Automata. Electronic Colloquium on Computational Complexity, ECCC-TR05-051 (revision 2) (April 2005)Google Scholar
  21. 21.
    Tosic, P.: Counting Fixed Point and Gardens of Eden of Sequential Dynamical Systems on Planar Bipartite Graphs. Electronic Colloquium on Computational Complexity, ECCC-TR05-091 (August. 2005)Google Scholar
  22. 22.
    Tosic, P., Agha, G.: Characterizing Configuration Spaces of Simple Threshold Cellular Automata. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 861–870. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  23. 23.
    Tosic, P., Agha, G.: On computational complexity of counting fixed points in certain classes of graph automata. In: Calude, C.S., Dinneen, M.J., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G. (eds.) UC 2005. LNCS, vol. 3699, pp. 191–205. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Tosic, P., Agha, G.: Parallel vs. Sequential Threshold Cellular Automata: Comparison and Contrast, session Complex Systems Methods 1. In: Proc. European Conference on Complex Systems (ECCS 2005), Euro. Complex Systems Society (2005)Google Scholar
  25. 25.
    Tosic, P., Agha, G.: On Computational Complexity of Predicting Dynamical Evolution of Large Agent Ensembles. In: Proc. of the 3rd European Workshop on Multiagent Systems (EUMAS 2005). Flemish Academy of Sciences, pp. 415–426 (2005)Google Scholar
  26. 26.
    Vadhan, S.: The Complexity of Counting in Sparse, Regular and Planar Graphs. SIAM J. Computing 31(2), 398–427 (2001)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Wegener, I.: “The Complexity of Boolean Functions”. Teubner Series Comp. Sci. Wiley, Chichester (1987)Google Scholar
  28. 28.
    Weiss, G. (ed.): Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. The MIT Press, Cambridge (1999)Google Scholar
  29. 29.
    Wolfram, S.: Theory and applications of cellular automata. World Scientific, Singapore (1986)MATHGoogle Scholar
  30. 30.
    Wolfram, S. (ed.): Cellular Automata and Complexity (collected papers). Addison-Wesley, Reading (1994)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Predrag T. Tošić
    • 1
  1. 1.Open Systems Laboratory, Department of Computer ScienceUniversity of Illinois at Urbana-ChampaignU.S.A.

Personalised recommendations