Advertisement

Agent-Based Approach for Distributed Intrusion Detection System Design

  • Krzysztof Juszczyszyn
  • Ngoc Thanh Nguyen
  • Grzegorz Kolaczek
  • Adam Grzech
  • Agnieszka Pieczynska
  • Radosław Katarzyniak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3993)

Abstract

The aim of this paper is to propose an architecture of distributed Intrusion Detection System (IDS). It is assumed that IDS system will detect and track dissemination and activity of the Internet worms. A general architecture for such a distributed multiagent system is proposed and the tasks, techniques and algorithms to be used are sketched.

Keywords

Multiagent System Cluster Coefficient Communication Pattern Intrusion Detection System Monitoring Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Allmanz, M., et al.: A First Look at Modern Enterprise Traffic. In: Proc. Internet Measurement Conference, October 2005, pp. 217–231 (2005)Google Scholar
  2. 2.
    Boykin, O., Roychowdhury, V.: Personal Email Networks: An Effective Anti-Spam Tool. IEEE Computer 38(4), 61–68 (2005)MathSciNetGoogle Scholar
  3. 3.
    Ebel, H., Mielsh, L., Bornholdt, S.: Scale-free topology of e-mail networks. Physical Review E 66, 121–131 (2002)Google Scholar
  4. 4.
    Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the Internet topology. In: Proc. ACM SIGCOMM 1999 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, August 1999, pp. 251–262 (1999)Google Scholar
  5. 5.
    Kohler, E., Liy, J., Paxson, V., Shenker, S.: Observed Structure of Addresses in IP Traffic. In: Proc. SIGCOMM Internet Measurement Workshop, November 2002, pp. 253–266 (2002)Google Scholar
  6. 6.
    Kolaczek, G., Kuchtiak-Pieczynska, A., Juszczyszyn, K., Grzech, A., Katarzynak, R., Nguyen, N.T.: A Mobile Agent Approach to Intrusion Detection in Network Systems. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds.) KES 2005. LNCS (LNAI), vol. 3682, pp. 514–519. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Nguyen, N.T.: Consensus systems for conflict solving in distributed systems. Information Sciences 147(1-4), 91–122 (2002)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Nicol, D., Liljenstam, M., Liu, J.: Multiscale Modeling and Simulation of Worm Effects on the Internet Routing Infrastructure. In: Proc. Performance Tools Conference, pp. 1–10 (2003)Google Scholar
  9. 9.
    Norros, I.: A storage model with self-similar input. Queueing Syst. 16, 387–396 (1994)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Lakhina, A., Crovella, M., Diot, C.: Diagnosing Network-Wide Traffic Anomalies. In: Proc. of ACM SIGCOMM 2004, Portland, pp. 219–230 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Krzysztof Juszczyszyn
    • 1
  • Ngoc Thanh Nguyen
    • 1
  • Grzegorz Kolaczek
    • 1
  • Adam Grzech
    • 1
  • Agnieszka Pieczynska
    • 1
  • Radosław Katarzyniak
    • 1
  1. 1.Institute of Information Science and EngineeringWrocław University of TechnologyWroclawPoland

Personalised recommendations