All-Electron DFT Modeling of SWCNT Growth Initiation by Iron Catalyst

  • G. L. Gutsev
  • M. D. Mochena
  • C. W. BauschlicherJr.
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3993)


Electronic and geometrical structures of Fe4Cn(CO)m (n+m≤6) and Fe4Cn (n=7—16) clusters along with their singly negatively and positively charged ions are computed using density functional theory with generalized gradient approximation (DFT-GGA). Isomers with CO bonded directly to the iron atoms and bonded to a carbon atom chemisorbed on the cluster surface are optimized for the Fe4C2CO, Fe4C2(CO)2, Fe4C3CO, and Fe4C4CO series. The computed total energies are used to estimate the energetics of the Boudouard disproportionation reactions Fe4Cn(CO)m + CO ( Fe4Cn + 1(CO)m − − 1 + CO2. Optimizations of the Fe4C4–Fe4C16 clusters have shown that dimers C2 are formed in the lowest energy states of Fe4C4,, trimers C3 – in Fe4C5and Fe4C6, tetramers C4 –in Fe4C7 and Fe4C8, a pentamer C5– in Fe4C9, and a hexamer C6– in Fe4C10. Cn rings attached to a Fe3face are formed in the lowest energy states of Fe4Cnbeginning with n=11.


Iron Atom Iron Catalyst Spin Multiplicity Boudouard Reaction Iron Pentacarbonyl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Su, M., Liu, J.: A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity. Chem. Phys. Lett. 322, 321–326 (2000)CrossRefGoogle Scholar
  2. 2.
    Maruyama, S., Murakami, Y., Shibuta, Y., Miyauchi, Y., Chiashi, S.: Generation of Single-Walled Carbon Nanotubes from Alcohol and Generation Mechanism by Molecular Dynamics Simulations. J. Nanosci. Nanotech. 4, 360–367 (2004)CrossRefGoogle Scholar
  3. 3.
    Arepalli, S.: Laser Ablation Process for Single-Walled Carbon Nanotube Production. J. Nanosci. Nanotech. 4, 317–325 (2004)CrossRefGoogle Scholar
  4. 4.
    Dai, H., Rinzler, A.G., Nikolaev, P., Thess, A., Golbert, D.T., Smalley, R.E.: Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem. Phys. Lett. 260, 471–475 (1996)CrossRefGoogle Scholar
  5. 5.
    Kong, J., Cassel, A.M., Dai, H.: Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem. Phys. Lett. 292, 567–574 (1998)CrossRefGoogle Scholar
  6. 6.
    Nikolaev, P., Bronikowski, M.J., Bradley, R.K., Rohmund, F., Colbert, D.T., Smith, K.A., Smalley, R.E.: Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 313, 91–97 (1999)CrossRefGoogle Scholar
  7. 7.
    Nikolaev, P.: Gas-Phase Production of Single-Walled Carbon Nanotubes from Carbon Monoxide: A Review of the HiPco Process. J. Nanosci. Nanotech. 4, 307–316 (2004)CrossRefGoogle Scholar
  8. 8.
    Tsui, F., Ryan, P.A.: Self-Organization of Carbide Superlattice and Nucleation of Carbon Nanotubes. J. Nanosci. Nanotech. 4, 408–413 (2004)CrossRefGoogle Scholar
  9. 9.
    Jost, O., Gorbunov, A., Liu, X., Pompe, W., Fink, J.: Single-Walled Carbon Nanotube Diameter. J. Nanosci. Nanotech. 4, 433–440 (2004)CrossRefGoogle Scholar
  10. 10.
    Gavillet, J., Thibault, J., Stéphan, O., Amara, H., Loiseau, A., Bichara, C., Gaspard, J.-P., Ducastelle, F.: Nucleation and Growth of Single-Walled Nanotubes: The Role of Metallic Catalysts. J. Nanosci. Nanotech. 4, 346–359 (2004)CrossRefGoogle Scholar
  11. 11.
    Zhao, J., Martinez-Limia, A., Balbuena, P.B.: Understanding Catalysed Growth of Single- Wall Carbon Nanotubes. Nanotechnology 16, 575–581 (2005)CrossRefGoogle Scholar
  12. 12.
    Ding, F., Rosén, A., Bolton, K.: Molecular dynamics study of the catalyst particle size dependence on carbon nanotube growth. J. Chem. Phys. 121, 2775–2779 (2004)CrossRefGoogle Scholar
  13. 13.
    Fan, X., Buczko, R., Puretzky, A.A., Geohegan, D.B., Howe, J.Y., Pantelides, S.T., Pennycook, S.J.: Nucleation of Single-Walled Carbon Nanotubes. Phys. Rev. Lett. 90, 145501–145504 (2003)CrossRefGoogle Scholar
  14. 14.
    Wells, J.C., Noid, D.W., Sumpter, B.G., Wood, R.F., Zhang, Q.: Multiscale simulations of carbon nanotube nucleation and growth: Electronic structure calculations. J. Nanosci. Nanotech. 4, 414–422 (2004)CrossRefGoogle Scholar
  15. 15.
    Gutsev, G.L., Bauschlicher Jr., C.W.: Structure of neutral and charged FenCO clusters (n = 1–6) and energetics of the FenCO + CO FenC + CO2 reaction. J. Chem. Phys. 119, 368–3690 (2003)Google Scholar
  16. 16.
    Gutsev, G.L., Bauschlicher Jr., C.W.: Interaction of carbon atoms with Fen, Fen-, and Fen+ clusters (n=1–6). Chem. Phys. 291, 27–40 (2003)CrossRefGoogle Scholar
  17. 17.
    Gutsev, G.L., Mochena, M.D., Bauschlicher Jr., C.W.: Structure and properties of Fe4 with different coverage by C and CO. J. Phys. Chem. 108, 11409–11418 (2004)Google Scholar
  18. 18.
    Gutsev, G.L., Mochena, M.D., Bauschlicher Jr., C.W.: All-electron DFT modeling of SWCNT growth on iron catalysts from carbon monoxide feedstock. J. Nanosci. Nanotech. (in press)Google Scholar
  19. 19.
    Schnabel, P., Irion, M.P., Weil, K.G.: Evidence for low-pressure catalysis in the gas phase by a naked metal cluster: the growth of benzene precursors on iron (Fe4+). J. Phys. Chem. 95, 9688–9694 (1991)CrossRefGoogle Scholar
  20. 20.
    Becke, A.D.: Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988)CrossRefGoogle Scholar
  21. 21.
    Perdew, J.P., Wang, Y.: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992)CrossRefGoogle Scholar
  22. 22.
    Raghavachari, K., Trucks, G.W.: Highly correlated systems: Excitation energies of first row transition metals Sc–Cu. J. Chem. Phys. 91, 1062–1065 (1989)CrossRefGoogle Scholar
  23. 23.
    Chrétien, S., Salahub, D.R.: Kohn-Sham density-functional study of low-lying states of the iron clusters Fen+/ Fen/ Fen-. Phys. Rev. B 66, 155425–155437 (2002)CrossRefGoogle Scholar
  24. 24.
    Gutsev, G.L., Bauschlicher Jr., C.W.: Electron affinities, ionization energies, and fragmentation energies of Fen clusters (n = 2-6): A Density Functional Theory study. J. Phys. Chem. A 107, 7013–7023 (2003)CrossRefGoogle Scholar
  25. 25.
    An, W., Bulusu, S., Zeng, X.C.: Ab initio calculation of bowl, cage, and ring isomers of C2 0 and C2 0-. J. Chem. Phys. 204109, 1–8 (2005)Google Scholar
  26. 26.
    Yang, S., Taylor, K.J., Craycraft, M.J., Conceicao, J., Pettiette, C.L., Cheshnovsky, O., Smalley, R.E.: UPS of 2–30-atom carbon clusters: Chains and rings. Chem. Phys. Lett. 144, 431–436 (1988)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • G. L. Gutsev
    • 1
  • M. D. Mochena
    • 1
  • C. W. BauschlicherJr.
    • 2
  1. 1.Department of PhysicsFlorida A&M UniversityTallahassee
  2. 2.Mail Stop 230-3 NASA Ames Research CenterMoffett FieldUSA

Personalised recommendations