Forward, Tangent Linear, and Adjoint Runge-Kutta Methods in KPP–2.2

  • Philipp Miehe
  • Adrian Sandu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3993)


This paper presents the new stiff solvers of the new version 2.2 of the Kinetic PreProcessor (KPP). Taking a set of chemical reactions and their rate coefficients as input, KPP generates Fortran90, Fortran77, Matlab, or C code for the temporal integration of the kinetic system. Efficiency is obtained by carefully exploiting the sparsity structures of the Jacobian and of the Hessian. A set of integration methods was added to the comprehensive suite of stiff numerical integrators. Moreover, KPP is now ready do be used to generate the tangent linear model, as well as the continuous and discrete adjoint models of the chemical system to do sensitivity analysis.


Adjoint Method Adjoint Sensitivity Tangent Linear Model Master Chemical Mechanism Rosenbrock Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Damian, V., Sandu, A., Damian, M., Potra, F., Carmichael, G.R.: The Kinetic PreProcessor KPP – A Software Environment for Solving Chemical Kinetics. Computers and Chemical Engineering 26(11), 1567–1579 (2002)CrossRefGoogle Scholar
  2. 2.
    Sandu, A., Daescu, D., Carmichael, G.R.: Direct and Adjoint Sensitivity Analysis of Chemical Kinetic Systems with KPP: I – Theory and Software Tools. Atmospheric Environment 37, 5083–5096 (2003)CrossRefGoogle Scholar
  3. 3.
    Daescu, D., Sandu, A., Carmichael, G.R.: Direct and Adjoint Sensitivity Analysis of Chemical Kinetic Systems with KPP: II – Validation and Numerical Experiments. Atmospheric Environment 37, 5097–5114 (2003)CrossRefGoogle Scholar
  4. 4.
    Sandu, A., Sander, R.: KPP – User’s Manual,
  5. 5.
    Sandu, A., Verwer, J.G., Blom, J.G., Spee, E.J., Carmichael, G.R., Potra, F.A.: Benchmarking stiff ODE solvers for atmospheric chemistry problems II: Rosenbrock methods. Atmospheric Environment 31, 3459–3472 (1997)CrossRefGoogle Scholar
  6. 6.
    Curtis, A.R., Sweetenham, W.P.: Facsimile/Chekmat User’s Manual. Computer Science and Systems Division, Harwell Lab., Oxfordshire, Great Britain (August 1987)Google Scholar
  7. 7.
    Djouad, R., Sportisse, B., Audiffren, N.: Reduction of multiphase atmospheric chemistry. Journal of Atmospheric Chemistry 46, 131–157 (2003)CrossRefGoogle Scholar
  8. 8.
    von Glasow, R., Sander, R., Bott, A., Crutzen, P.J.: Modeling halogen chemistry in the marine boundary layer. 1. Cloud-free MBL. Journal of Geophysical Research 107(D) EID:4341 (2002)Google Scholar
  9. 9.
    von Kuhlmann, R., Lawrence, M.G., Crutzen, P.J., Rasch, P.J.: A model for studies of tropospheric ozone and nonmethane hydrocarbons: Model description and ozone results. Journal of Geophysical Research 108(D) (2003), doi:10.1029/2002JD002893Google Scholar
  10. 10.
    Sander, R., Kerkweg, A., Jöckel, P., Lelieveld, J.: Technical Note: The new comprehensive atmospheric chemistry module MECCA. Atmospheric Chemistry and Physics 5, 445–450 (2005)CrossRefGoogle Scholar
  11. 11.
    Trentmann, J., Andreae, M.O., Graf, H.-F.: Chemical processes in a young biomass-burning plume. Journal of Geophysical Research 108(D) (2003), doi:10.1029/2003JD003732Google Scholar
  12. 12.
    Tang, Y., Carmichael, G.R., Uno, I., Woo, J.-H., Kurata, G., Lefer, B., Shetter, R.E., Huang, H., Anderson, B.E., Avery, M.A., Clarke, A.D., Blake, D.R.: Impacts of aerosols and clouds on photolysis frequencies and photochemistry during TRACE-P: 2. Three-dimensional study using a regional chemical transport model. Journal of Geophysical Research 108(D) (2003), doi:10.1029/2002JD003100Google Scholar
  13. 13.
    Hairer, E., Wanner, G.: Solving Ordinary Differential Equations I. Nonstiff Problems. Springer Series in Computational Mathematics (1991)Google Scholar
  14. 14.
    Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Springer Series in Computational Mathematics (1996)Google Scholar
  15. 15.
    Leis, J.R., Kramer, M.A.: ODESSA - An Ordinary Differential Equation Solver with Explicit Simultaneous Sensitivity Analysis. ACM Transactions on Mathematical Software 14(1), 61 (1986)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Radhakrishnan, K., Hindmarsh, A.: Description and use of LSODE, the Livermore solver for differential equations. Lawrence Livermore National laboratory Report UCRL-ID-113855 (1993)Google Scholar
  17. 17.
    Brown, P.N., Byrne, G.D., Hindmarsh, A.C.: VODE: A Variable Step ODE Solver. SIAM J. Sci. Stat. Comput. 10, 1038–1051 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Carter, W.P.L.: Documentation of the SAPRC-99 Chemical Mechanism for VOC Reactivity Assessment. California Air Resources Board Contract, pp. 92–329 (2000)Google Scholar
  19. 19.
  20. 20.
  21. 21.
  22. 22.
  23. 23.
  24. 24.
  25. 25.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Philipp Miehe
    • 1
  • Adrian Sandu
    • 1
  1. 1.Department of Computer ScienceVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations