Geographical Construction of Scale-Free Networks with Both Short Path Lengths and Hops

  • Yukio Hayashi
  • Jun Matsukubo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3993)


We find the structural effect in geographical networks on the optimal paths and on the robustness of the connectivity. The communication efficiency are measured by the average path lengths and hops in the typical planar networks: Delaunay triangulation, random Apollonian network, and our proposed model with the well-balanced properties. The dynamic configuration will be useful especially for ad hoc communication.


Degree Distribution Optimal Path Delaunay Triangulation Average Path Length Link Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Barabási, A.-L.: Linked: The New Science of Networks. Perseus (2002)Google Scholar
  2. 2.
    Cancho, R.F.I., Solé, R.V.: Optimization in Complex Networks. In: Pastor-Satorras, R., Rubi, M., Diaz-Guilera, A. (eds.) Statistical Mechanics in Complex Networks. Lecture Notes in Physics, vol. 625, pp. 114–126. Springer, Berlin (2003)Google Scholar
  3. 3.
    Albert, R., Barabási, A.-L.: Nature 406, 378 (2000)Google Scholar
  4. 4.
    Yook, S.-H., Jeong, H., Barabási, A.-L.: PNAS 99(21),13382 (2002)Google Scholar
  5. 5.
    Gastner, M.T., Newman, M.E.J.: arXiv:cond-mat/0407680 (2004)Google Scholar
  6. 6.
    Hayashi, Y.: IPSJ Journal, Special Issue on Network Ecology 47(3) (2006) or arXiv:physics/0512011 (2005)Google Scholar
  7. 7.
    Braunstein, L.A., et al.: Phys. Rev. Lett. 91, 168701 (2003)Google Scholar
  8. 8.
    Kalisky, T., et al.: Phys. Rev. E 72, 025102 (2005)Google Scholar
  9. 9.
    Tadic, B., Thurner, S.: Physica A 332, 566 (2004) and 346, 183 (2005)Google Scholar
  10. 10.
    Manna, S.S., Parongama, S.: Phys. Rev. E 66, 066114 (2002)Google Scholar
  11. 11.
    Xulvi-Brunet, R., Sokolov, I.M.: Phys. Rev. E 66, 026118 (2002)Google Scholar
  12. 12.
    Warren, C.P., Sander, L.M., Sokolov, I.M.: Phys. Rev. E 66, 056105 (2002)Google Scholar
  13. 13.
    Ben-Avraham, D., et al.: Physica A 330, 107 (2003)Google Scholar
  14. 14.
    Zhou, T., Yan, G., Wang, B.-H.: Phys. Rev. E 71, 046141 (2005)Google Scholar
  15. 15.
    Doye, J.P.K., Massen, C.P.: Phys. Rev. E 71, 016128 (2004)Google Scholar
  16. 16.
    Andrade Jr., J.S., et al.: Phys. Rev. Lett. 94, 018702 (2005)Google Scholar
  17. 17.
    Bose, P., Morin, P.: SIAM J. of Computing 33(4), 937 (2004)Google Scholar
  18. 18.
    Imai, K.: IEICE Trans. on Infor. and Syst. 83-D(3), 428 (2000)Google Scholar
  19. 19.
    Okabe, A., et al.: Spatial Tessellations, 2nd edn. John Wiley, Chichester (2000)MATHCrossRefGoogle Scholar
  20. 20.
    Keil, J.M., Gutwin, C.A.: Discrete Compt. Geom. 7, 13 (1992)Google Scholar
  21. 21.
    Amaral, L.A.N., et al.: PNAS 97(21), 11149 (2000)Google Scholar
  22. 22.
    Cohen, R., et al.: Structural properties of scale-free networks. In: Bornholdts, S., Shuster, H.G. (eds.) Handbook of Graphs and Networks, pp. 85–110. Wiley-VCH, New York (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yukio Hayashi
    • 1
  • Jun Matsukubo
    • 2
  1. 1.Japan Advanced Institute of Science and TechnologyIshikawaJapan
  2. 2.Kitakyusyu National College of TechnologyFukuokaJapan

Personalised recommendations