Advertisement

A Framework for Execution of Computational Chemistry Codes in Grid Environments

  • André Severo Pereira Gomes
  • Andre Merzky
  • Lucas Visscher
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3993)

Abstract

Grid computing is a promising technology for computational chemistry, due to the large volume of calculations involved in appplications such as molecular modeling, thermochemistry and other types of systematic studies. Difficulties in using computational chemistry codes in grid environments arise, however, from the fact that the application software is complex, requiring substantial effort to be installed on different platforms. Morever, these codes depend upon task–dependent sets of data files to be present at the execution nodes. Aiming to improve the usability of different quantum chemistry codes in the distributed, heterogeneous environments found in computational grids, we describe a framework capable of handling the execution of different codes on different platforms. This framework can be divided into three independent parts, one dealing with the mapping of a calculation to a set of codes and the construction of execution environments, one dealing with the management of grid resources, and one that takes care of the heterogeneity of the environment. The suitability of this framework to tackle typical quantum chemistry calculations is discussed and illustrated by a model application.

Keywords

Grid Computing Computational Chemistry Grid(lab) Application Toolkit Heterogeneous Environment Command–line Interface 

References

  1. 1.
    Greenberg, J.P., Mock, S., Bhatia, K., Katz, M., Bruno, G., Sacerdoti, F., Papadopoulos, P., Baldridge, K.K.: Future Generation Computer Systems 21, 3 (2005)Google Scholar
  2. 2.
    Sudholt, W., Baldridge, K.K., Abramson, D., Enticott, C., Garic, S., Kondric, C., Nguyen, D.: Future Generation Computer Systems 21, 27 (2005)Google Scholar
  3. 3.
    Foster, I., Kesselman, C.: Future Generation Computer Systems 15, 607 (1999)Google Scholar
  4. 4.
    Baldridge, K.K., Greenberg, J.P., Elbert, S.T., Mock, S., Papadopoulos, P.: QMView and GAMESS: Integration into the world wide computational grid. IEEE, Los Alamitos (2002)Google Scholar
  5. 5.
    Nishikawa, T., Nagashima, U., Sekiguchi, S.: ICCS 2003, Part III. LNCS, vol. 2659, p. 244. Springer, Heidelberg (2003)Google Scholar
  6. 6.
    Kwak, J., Lee, Y.S.: Journal of Theoretical and Computational Chemistry 4, 289 (2005)Google Scholar
  7. 7.
    Lesyng, B., Bala, P., Erwin, D.: Journal of Parallel and Distribured Computing 63, 590 (2003)Google Scholar
  8. 8.
  9. 9.
    Almond, J., Snelling, D.: Future Generation Computer Systems 15, 539 (1999)Google Scholar
  10. 10.
  11. 11.
    Allen, G., Davies, K., Goodale, T., Hutanu, A., Kaiser, H., Kielmann, T., Merzky, A., Nieuwpoort, R., Reinefeld, A., Schintke, F., Schutt, T., Seidel, E., Ullmer, B.: The grid application toolkit: Towards generic and easy application programming interfaces for the grid. Proceedings of the IEEE 93, 534 (2005)CrossRefGoogle Scholar
  12. 12.
    Keahey, K., Foster, I., Freeman, T., Zhang, X., Galron, D.: Virtual Workspaces in the Grid. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 421–431. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Keahey, K., Doering, K., Foster, I.: From Sandbox to Playground: Dynamic Virtual Environments in the Grid. In: 5th International Workshop in Grid Computing (Grid 2004), Pittsburgh, PA, USA (2004)Google Scholar
  14. 14.
  15. 15.
  16. 16.
  17. 17.
    Bal, H., Bhoedjang, R., Hofman, R., Jacobs, C., Kielmann, T., Maassen, J., Nieuwpoort, R., Romein, J., Renambot, L., Rh, T., Verstoep, K., Baggio, A., Ballintijn, G., Kuz, I., Pierre, G., Steen, M., Tanenbaum, A., Doornbos, G., Germans, D., Spoelder, H., Baerends, E.J., Gisbergen, S., Afsermanesh, H., Albada, D., Belloum, A., Dubbeldam, D., Hendrikse, Z., Hertzberger, B., Hoekstra, A., Iskra, K., Kandhai, D., Koelma, D., Linden, F., Overeinder, B., Sloot, P., Spinnato, P., Epema, D., Gemund, A., Jonker, P., Radulescu, A., Reeuwijk, C., Sips, H., Knijnenburg, P., Lew, M., Sluiter, F., Wolters, L., Blom, H., Laat, C., Steen, A.: ACM SIGOPS Operating Systems Review 34, 76 (2000)Google Scholar
  18. 18.
    Seidel, E., Allen, G., Merzky, A., Nabrzyski, J.: Future Generation Computer Systems 18, 1143 (2002)Google Scholar
  19. 19.
  20. 20.
    Tatipamula, M., Bos, E.J.: IEICE Transactions on Communications E878 3, 400 (2004)Google Scholar
  21. 21.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • André Severo Pereira Gomes
    • 1
  • Andre Merzky
    • 2
  • Lucas Visscher
    • 1
  1. 1.Department of Theoretical Chemistry, Faculty of Exact SciencesVrije Universiteit AmsterdamAmsterdamThe Netherlands
  2. 2.Department of Computer Science, Faculty of Exact SciencesVrije Universiteit AmsterdamAmsterdamThe Netherlands

Personalised recommendations