Synchronization in Network Structures: Entangled Topology as Optimal Architecture for Network Design

  • Luca Donetti
  • Pablo I. Hurtado
  • Miguel A. Muñoz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3993)


In these notes we study synchronizability of dynamical processes defined on complex networks as well as its interplay with network topology. Building from a recent work by Barahona and Pecora [Phys. Rev. Lett. 89, 054101 (2002)], we use a simulated annealing algorithm to construct optimally-synchronizable networks. The resulting structures, known as entangled networks, are characterized by an extremely homogeneous and interwoven topology: degree, distance, and betweenness distributions are all very narrow, with short average distances, large loops, and small modularity. Entangled networks exhibit an excellent (almost optimal) performance with respect to other flow or connectivity properties such as robustness, random walk minimal first-passage times, and good searchability. All this converts entangled networks in a powerful concept with optimal properties in many respects.


Optimal Topology Random Graph Scale Free Network Laplacian Matrix Short Loop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Barabási, A.-L.: Linked: The New Science of Networks. Perseus Publishing, Cambridge (2002); Pastor-Satorras, R., Vespignani, A.: Evolution and Structure of the Internet. Cambridge Univ. Press, Cambridge (2004).Google Scholar
  2. 2.
    Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of Networks. Adv. Phys. 51, 1079–1187 (2002); Albert, R., Barabási, A.-L.: Statistical Mechanics of Complex Networks. Rev. Mod. Phys. 74, 47–97 (2002); Krapivsky, P.L., Redner, S.: A Statistical Physics Perspective on Web Growth. Computer Networks 39, 261–276 (2002)Google Scholar
  3. 3.
    Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001); Glass, L.: Synchronization and Rhythmic Processes in Physiology. Nature 410, 277–284 (2001).MATHCrossRefGoogle Scholar
  4. 4.
    Belykh, I., de Lange, E., Hasler, M.: Synchronization of Bursting Neurons: What Matters in the Network Topology. Phys. Rev. Lett. 94, 188101 (2005); Cossart, R., Aronov, D., Yuste, R.: Attractor Dynamics of Network Up States in the Neocortex. Nature 423, 283–288 (2003)Google Scholar
  5. 5.
    Arenas, A., Díaz-Guilera, A., Pérez-Vicente, C.J.: Synchronization Reveals Topological Scales in Complex Networks. ArXiv cond-mat/0511730Google Scholar
  6. 6.
    Barahona, M., Pecora, L.M.: Synchronization in Small-World Systems. Phys. Rev. Lett. 89, 054101 (2002); Pecora, L.M., Carrol, T.L.: Master Stability Functions for Synchronized Coupled Systems. Phys. Rev. Lett. 80, 2109–2112 (1998); Pecora, L.M., Barahona, M.: Synchronization of Oscillators in Complex Networks. Chaos and Complexity Letters 1(1), 61–91 (2005)Google Scholar
  7. 7.
    Donetti, L., Hurtado, P.I., Muñoz, M.A.: Entangled Networks, Synchronization, and Optimal Network Topology. Phys. Rev. Lett. 95, 188701 (2005)Google Scholar
  8. 8.
    Nishikawa, T., et al.: Heterogeneity in Oscillator Networks: Are Smaller Worlds Easier to Synchronize? Phys. Rev. Lett. 91, 014101 (2003); Hong,H., et al.: Factors that Predict Better Synchronizability on Complex Networks. Phys. Rev. E 69, 067105 (2004)Google Scholar
  9. 9.
    Chavez, M., et al.: Synchronization is Enhanced in Weighted Complex Networks. Phys. Rev. Lett. 94, 218701 (2005)Google Scholar
  10. 10.
    Penna, T.J.P.: Traveling Salesman Problem and Tsallis Statistics. Phys. Rev. E 51, R1–R3 (1995)Google Scholar
  11. 11.
    Donetti, L., Muñoz, M.A.: Detecting Network Communities: a new systematic and powerful algorithm. J. Stat. Mech.: Theor. Exp., P10012–P10027 (2004)Google Scholar
  12. 12.
    Valente, A.X.C.N., Sarkar, A., Stone, H.A.: Two-Peak and Three-Peak Optimal Complex Networks. Phys. Rev. Lett. 92, 118702 (2004)Google Scholar
  13. 13.
    Tadić, B., Thurner, S., Rodgers, G.J.: Traffic on complex networks: Towards understanding global statistical properties from microscopic density fluctuations. Phys. Rev. E 69, 036102 (2004)Google Scholar
  14. 14.
    Guimerà, R., et al.: Optimal Network Topologies for Local Search with Congestion. Phys. Rev. Lett. 89, 248701 (2002)Google Scholar
  15. 15.
    Colizza, V., et al.: Network Structures from Selection Principles. Phys. Rev. Lett. 92, 198701 (2004)Google Scholar
  16. 16.
    Sarnak, P.: What is an Expander? Not. Am. Math. Soc. 51, 762–763 (2004)Google Scholar
  17. 17.
    Lovasz, L.: Random Walks on Graphs: A Survey. In: Combinatorics, Paul Erdös is Eighty, Keszthely, Hungary, vol. 2, pp. 1–46 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Luca Donetti
    • 1
    • 3
  • Pablo I. Hurtado
    • 1
    • 2
  • Miguel A. Muñoz
    • 1
  1. 1.Departamento de Electromagnetismo y Física de la Materia, and Instituto Carlos I de Física Teórica y Computacional, Facultad de CienciasUniversidad de GranadaGranadaSpain
  2. 2.Laboratoire des Colloïdes, Verres et NanomatériauxUniversité Montpellier IIMontpellier CEDEX 5France
  3. 3.Departamento de Electrónica y Tecnología de Computadores, Facultad de CienciasUniversidad de GranadaGranadaSpain

Personalised recommendations