Local Information Based Algorithms for Packet Transport in Complex Networks

  • Bernard Kujawski
  • G. J. Rodgers
  • Bosiljka Tadić
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3993)


We introduce four algorithms for packet transport in complex networks. These algorithms use deterministic rules which depend, in different ways, on the degree of the node, the number of packets posted down each edge, the mean delivery time of packets sent down each edge to each destination and the time since an edge last transmitted a packet. On scale-free networks all our algorithms are considerably more efficient and can handle a larger load than the random walk algorithm. We consider in detail various attributes of our algorithms, for instance we show that an algorithm that bases its decisions on the mean delivery time jams unless it incorporates information about the degree of the destination node.


Random Walk Delivery Time Short Path Algorithm Navigation Algorithm Deterministic Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Faloutsos, M., Faloutsos, P., Faloutsos, C.: Comp. Comm. Rev. 29, 251 (1999)Google Scholar
  2. 2.
    Albert, R., Jeong, H., Barabasi, A.-L.: Nature 401, 130 (1999)Google Scholar
  3. 3.
    Huberman, B., Adamic, L.: Nature 401, 131 (1999)Google Scholar
  4. 4.
    Adamic, L.A., Lukose, R.M., Puniyani, A.R., Huberman, B.A.: Phys. Rev. E 64, 046135 (2001)Google Scholar
  5. 5.
    Tadić, B., Thurner, S.: Physica A 332, 566 (2004)Google Scholar
  6. 6.
    Tadić, B., Thurner, S., Rodgers, G.J.: Phys. Rev. E 69, 036102 (2004)Google Scholar
  7. 7.
    Arenas, A., Diaz-Guilera, A., Guimera, R.: Phys. Rev. Lett. 86, 3196 (2001)Google Scholar
  8. 8.
    Sole, R., Valverde, S.: Physica A 289, 595 (2001)Google Scholar
  9. 9.
    Jacobson, V.: Proceedings of SIGCOMM 1988. ACM, Standford (1988)Google Scholar
  10. 10.
    Yan, G., Zhuo, T., Hu, B., Fu, Z.-Q., Wang, B.-H.: cond-mat/0505366 (2005)Google Scholar
  11. 11.
    Yin, C.-Y., Wang, B.-H., Wang, W.-X., Zhou, T., Yang, H.-J.: cond-mat/0506204 (2005)Google Scholar
  12. 12.
    Albert, R., Barabasi, A.-L.: Rev. Mod. Phys. 74, 47 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Bernard Kujawski
    • 1
  • G. J. Rodgers
    • 1
  • Bosiljka Tadić
    • 2
  1. 1.Department of Mathematical SciencesBrunel UniversityUxbridge, MiddlesexUK
  2. 2.Department for Theoretical PhysicsJožef Stefan InstituteLjubljanaSlovenia

Personalised recommendations