Ab initio Modeling of Optical Properties of Organic Molecules and Molecular Complexes

  • Vladimir I. Gavrilenko
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3993)


Electronic excitations are key points of most of the commonly measured optical spectra. The first principle studies of excited states however require much larger effort than computations of the ground state reliably reproduced by the density functional theory (DFT). In present work computation of optical functions of organic molecular complexes is studied. The system of independent particles excited by external light field is considered within perturbation theory (the random phase approximation, RPA). Optical response functions are calculated using ab initio pseudopotentials theory. Results of predicted optical absorption associated with organic semi-conducting conjugated polymers, poly-phenylene-vinylenes (PPV), are presented. Effects of different corrections to the DFT improving accuracy are considered. Results are discussed in comparison with available experimental data.


Density Functional Theory Optical Absorption Spectrum Random Phase Approximation Optical Function Coulomb Gauge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kohn, W., Sham, L.: J. Phys. Rev. 140, A1133–A1143 (1965)Google Scholar
  2. 2.
    Rohlfing, M., Luie, S.G.: Phys. Rev. Lett. 82, 1959–1962 (1999)Google Scholar
  3. 3.
    Onida, G., Reining, L., Rubio, A.: Rev. Mod. Phys. 74, 601–633 (2002)Google Scholar
  4. 4.
    Barford, W.: Electronic and Optical Properties of Conjugated Polymers. Oxford University Press, New York (2005)Google Scholar
  5. 5.
    Gavrilenko, V.I., Bechstedt, F.: Phys. Rev. B 55, 4343–4352 (1997)Google Scholar
  6. 6.
    Gavrilenko, V.I., Noginov, M.A.: J. Chem. Phys. 124, 44301–44306 (2006)Google Scholar
  7. 7.
    Material Studio Modeling 3.2, Accelrys Software Inc. (2004)Google Scholar
  8. 8.
    Fuchs, M., Schefler, M.: Comput. Phys. Commun. 16, 1–18 (1999)Google Scholar
  9. 9.
    Gavrilenko, V.I.: Phys. Status Solidi (a) 188, 1267–1280 (2001)Google Scholar
  10. 10.
    Troullier, N., Martins, J.L.: Phys. Rev. B 43, 1993–1998 (1991)Google Scholar
  11. 11.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Re. Lett. 77, 3865–3875 (1996)Google Scholar
  12. 12.
    Yu, P., Cardona, M.: Fundamentals of Semiconductors. Springer, Heidelberg (2001)Google Scholar
  13. 13.
    Adolph, B., Gavrilenko, V.I., Tenelsen, K., Bechstedt, F., Del Sole, R.: Phys. Rev. B 53, 9797–9808 (1996)Google Scholar
  14. 14.
    Bonner Jr., C.E., Charter, S., Lorts, A., Gavrilenko, V.I.: SPIE Int. Conf. on Optics and Photonics, San Diego (2006) (submitted)Google Scholar
  15. 15.
    Frolov, S., Bao, Z., Wohlgenannt, M., Vardeny, Z.V.: Phys. Rev. B 65, 205209–205218 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Vladimir I. Gavrilenko
    • 1
  1. 1.Center for Materials ResearchNorfolk State UniversityNorfolkUSA

Personalised recommendations