Conformational Processes in L-Alanine Studied Using Dual Space Analysis

  • Chantal T. Falzon
  • Feng Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3993)


Binding energy spectra and orbital momentum distributions of the two most stable conformers of L-alanine are investigated. Molecular properties such as geometry and dipole moments agree well with available experimental and previous theoretical investigations. Dual space analysis is employed to study the binding energy spectra in coordinate space based on B3LYP/TZVP density functional calculations, and the valence orbital momentum distributions based on the plane wave impulse approximation. In the valence space, the HOMO (24a), NHOMO (23a) and orbitals 22a and 18a are selected to study the conformational processes in L-alanine.


Bond Rotation Valence Space Global Minimum Structure Outer Valence Plane Wave Impulse Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Blanco, S., et al.: J. Am. Chem. Soc. 126, 11675 (2004)Google Scholar
  2. 2.
    Baldwin, T., Lapointe, M.: The Chemistry of Amino Acids. The Biology Project (2003) [Online],
  3. 3.
    Rennie, M.J.: Physical Exertion, Amino Acid and Protein Metabolism and Protein Requirements. Proteins and Amino Acids. National Academy Press, Washington (1999)Google Scholar
  4. 4.
    Falzon, C.T., Wang, F.: J. Chem. Phys. 123, 214307 (2005)Google Scholar
  5. 5.
    (a) Cao, M., et al.: J. Mol. Struct: THEOCHEM 332, 251 (1995); (b) Godfrey, P.D., et al.: J. Mol. Struct. 376, 65 (1996); (c) Kaschner, R., Hohl, D.: J. Phys. Chem. A 102, 5111 (1998)Google Scholar
  6. 6.
    Császár, A.G.: J. Phys. Chem. 100, 3541 (1996)Google Scholar
  7. 7.
    Godfrey, P.D., et al.: J. Am. Chem. Soc. 115, 9687 (1993)Google Scholar
  8. 8.
    (a) Iijima, K., Beagley, B.: J. Mol. Struct. 248, 133 (1991); (b) Iijima, K., Nakano, M.: J. Mol. Struct. 255, 485–486 (1999)Google Scholar
  9. 9.
    Lesarri, A., et al.: Angew. Chem. Int. Ed. 43, 605 (2004)Google Scholar
  10. 10.
    Wang, F.: J. Phys. Chem. A 107, 10199 (2003)Google Scholar
  11. 11.
    Godbout, N., et al.: Can. J. Chem. 70, 560 (1992)Google Scholar
  12. 12.
    Frisch, M.J., et al.: Gaussian Inc.; Wallingford: CT (2004)Google Scholar
  13. 13.
    McCarthy, I.E., Weigold, E.: Rep. Prog. Phys. 54, 789 (1991)Google Scholar
  14. 14.
    Stepanian, S.G., et al.: J. Phys. Chem. A 107, 4623 (1998)Google Scholar
  15. 15.
    Falzon, C.T., Wang, F., Pang, W.N.: J. Phys. Chem. B (2006)Google Scholar
  16. 16.
    Schaftenaar, G., Noordik, J.J.: Comput.-Aided Mol. Design 14, 123 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Chantal T. Falzon
    • 1
  • Feng Wang
    • 1
  1. 1.Centre for Molecular SimulationSwinburne University of TechnologyHawthorn, MelbourneAustralia

Personalised recommendations