Application of the Reactivity Index to Propose Intra and Intermolecular Reactivity in Catalytic Materials

  • Abhijit Chatterjee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3993)


This study is based on our earlier work with reactivity index to propose intra and inter molecular reactivity in catalytic materials using density functional theory, within the domain of hard soft acid base (HSAB) principle. We have as well shown a small example to show directly the utility of this method in elucidating acidity in catalytic material of interest. Our goal is to show that a simple theory can be useful to design new futuristic material of interest.


Reactivity Index Catalytic Material Fukui Function Local Softness Intermolecular Reactivity 


  1. 1.
    Pearson, R.G.: Recent advances in the concept of hard and soft acids and bases. J. Chem. Edu. 64, 561–567 (1987)CrossRefGoogle Scholar
  2. 2.
    Parr, R.G., Pearson, R.G.: Absolute hardness - companion parameter to absolute electronegativity. J. Am. Chem. Soc. 105, 7512–7516 (1983)CrossRefGoogle Scholar
  3. 3.
    Geerlings, P., De Proft, F.: HSAB principle: Applications of its global and local forms in organic chemistry. Int. J. Quant. Chem. 80, 227–235 (2000)CrossRefGoogle Scholar
  4. 4.
    Chatterjee, A., Iwasaki, T., Ebina, T.: Reactivity index scale for interaction of heteroatomic molecules with zeolite framework. J. Phys. Chem. A 103, 2489–2494 (1999)CrossRefGoogle Scholar
  5. 5.
    Chatterjee, A., Iwasaki, T.: A Reactivity Index Study to Choose the Best Template for a Particular Zeolite Synthesis. J. Phys. Chem. A 105, 6187–6196 (2001)CrossRefGoogle Scholar
  6. 6.
    Chatterjee, A., Iwasaki, T., Ebina, T.: Best dioctahedral smectite for nitrogen heterocyclics adsorption – a reactivity index study. J. Phys. Chem. A 105, 10694–10701 (2001)CrossRefGoogle Scholar
  7. 7.
    Chatterjee, A., Ebina, T., Iwasaki, T., Mizukami, F.: Intermolecular Reactivity Study to Scale Adsorption Property of Para and Meta Substituted Nitrobenzene over 2:1 Dioctahedral Smectite. J. Chem. Phys. 118, 10212–10220 (2003)CrossRefGoogle Scholar
  8. 8.
    Chatterjee, A., Ebina, T., Onodera, Y., Mizukami, F.: 2,3,7,8 tetrachloro Dibenzo-p-dioxin Can Be Successfully Decomposed over 2:1 Dioctahedral Smectite – A Reactivity Index Study. J. Mol. Graphics & Modeling 22, 93–104 (2003)CrossRefGoogle Scholar
  9. 9.
    Chatterjee, A., Suzuki, T., Takahashi, Y., Tanaka, D.A.P.: A density functional study to choose the best fluorophore for PET sensor Chemistry. A European Journal 9, 3920–3929 (2003)Google Scholar
  10. 10.
    Chatterjee, A., Ebina, T., Onodera, Y., Mizukami, F.: Effect of exchangeable cation on the swelling property of 2:1 dioctahedral smectite – a periodic first principle study. J. Chem. Phys. 120, 3414–3424 (2004)CrossRefGoogle Scholar
  11. 11.
    Delley, B.: An all-electron numerical-method for solving the local density functional for polyatomic-molecules. J. Chem. Phys. 92, 508–517 (1990)CrossRefGoogle Scholar
  12. 12.
    Becke, A.D.: A multicenter numerical-integration scheme for polyatomic-molecules. J. Chem. Phys. 88, 2547–2553 (1988)CrossRefGoogle Scholar
  13. 13.
    Lee, C.T., Yang, W.T., Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density. Physical Review B 37, 785–789 (1988)CrossRefGoogle Scholar
  14. 14.
    Saadoune, I., Catlow, C.R.A., Corà, F.: Site ordering of dopant ions in microporous aluminophosphates-—size effects. Microporous and Mesoporous Materials 59, 161–165 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Abhijit Chatterjee
    • 1
  1. 1.Material Science, AccelrysTokyoJapan

Personalised recommendations