Negative Selection with Ranking Procedure in Tabu-Based Multi-criterion Evolutionary Algorithm for Task Assignment

  • Jerzy Balicki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3993)


In this paper, an improved negative selection procedure to handle constraints in a multi-criterion evolutionary algorithm has been proposed. The problem that is of interest to us is the complex task assignment for a distributed computer system. Both a workload of a bottleneck computer and the cost of system are minimized; in contrast, a reliability of the system is maximized. Moreover, constraints related to memory limits and computer locations are imposed. Finally, an evolutionary algorithm with tabu search procedure and the improved negative selection is proposed to provide effective solutions.


Evolutionary Algorithm Negative Selection Task Assignment Memory Limit Artificial Immune System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Balicki, J.: Immune Systems in Multi-criterion Evolutionary Algorithm for Task Assignments in Distributed Computer System. In: Szczepaniak, P.S., Kacprzyk, J., Niewiadomski, A. (eds.) AWIC 2005. LNCS, vol. 3528, pp. 51–56. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Bernaschi, M., Castiglione, F., Succi, S.: A High Performance Simulator of the Immune System. Future Generation Computer System 15, 333–342 (1999)CrossRefGoogle Scholar
  3. 3.
    Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, New York (2002)MATHGoogle Scholar
  4. 4.
    Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)MATHGoogle Scholar
  5. 5.
    Farmer, J.D.: A Rosetta Stone for Connectionism. Physica D 22, 153–187 (1990)CrossRefGoogle Scholar
  6. 6.
    Forrest, S., Perelson, A.S.: Genetic Algorithms and the Immune System. LNCS, pp. 320–325 (1991)Google Scholar
  7. 7.
    Greco, S., Slowinski, R., Stefanowski, J.: Mining Association Rules in Preference-ordered Data. In: Hacid, M.-S., Raś, Z.W., Zighed, D.A., Kodratoff, Y. (eds.) ISMIS 2002. LNCS, vol. 2366, pp. 442–451. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Jerne, N.K.: Idiotypic Networks and Other Preconceived Ideas. Immunological Revue 79, 5–25 (1984)CrossRefGoogle Scholar
  9. 9.
    Kim, J., Bentley, P.J.: Immune Memory in the Dynamic Clonal Selection Algorithm. In: Proc. of the First Int. Conf. on Artificial Immune Systems, Canterbury, pp. 57–65 (2002)Google Scholar
  10. 10.
    Koziel, S., Michalewicz, Z.: Evolutionary Algorithms, Homomorphous mapping, and Constrained Parameter Optimisation. Evolutionary Computation 7, 19–44 (1999)CrossRefGoogle Scholar
  11. 11.
    Schaefer, R., Kołodziej, J.: Genetic Search Reinforced by the Population Hierarchy. In: De Jong, K.A., Poli, R., Rowe, J.E. (eds.) Foundation of Genetic Algorithms, pp. 383–399. Morgan Kaufman Publisher, San Francisco (2003)Google Scholar
  12. 12.
    Weglarz, J., Nabrzyski, J., Schopf, J.: Grid Resource Management: State of the Art and Future Trends. Kluwer Academic Publishers, Boston (2003)Google Scholar
  13. 13.
    Wierzchon, S.T.: Immune-based Recommender System. In: Hryniewicz, O., Kacprzyk, J., Koronacki, J., Wierzchon, S.T. (eds.) Issues in Intelligent Systems. Paradigms. Exit, Warsaw, pp. 341–356 (2005)Google Scholar
  14. 14.
    Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation 8(2), 173–195 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jerzy Balicki
    • 1
  1. 1.Naval University of GdyniaGdyniaPoland

Personalised recommendations