Advertisement

The Autonomous Concurrent Strategy for Large Scale CAE Computation

  • P. Uhruski
  • W. Toporkiewicz
  • R. Schaefer
  • M. Grochowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3993)

Abstract

The paper presents the Agent-Oriented technology for running the parallel CAE computation. Fast and effective distributed diffusion scheduling is available that minimizes computation and communication time necessary for task governing and provides transparency in resource availability. Detailed evaluation of the diffusion rule parameters was obtained in the course of analysis of computational, memory and communicational complexity of CAE tasks.

Keywords

Domain Decomposition Mesh Generation Master Node Conjugate Gradient Iteration Rule Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Barragy, E., Carey, G.F., Van de Geijn, R.: Performance and Scalability of Finite Element Analysis for Distributed Parallel Computation. Journal of Parallel and Distributed Computing 21, 202–212 (1994)MATHCrossRefGoogle Scholar
  2. 2.
    Georg, P.L.: Automatic Mesh Generation. John Wiley & Sons, Chichester (1991)Google Scholar
  3. 3.
    Schaefer, R., Toporkiewicz, W., Grochowski, M.: Rough partitioning of lumped structures. In: Formal Methods and Intelligent Techniques in Control, Decision Making, Multimedia and Robotics, October 2000, pp. 151–166. Polish-Japanese Institute of Information Technology Press, Warsaw (2000)Google Scholar
  4. 4.
    Grochowski, M., Schaefer, R., Uhruski, P.: An Agent-based Approach To a Hard Computing System - Smart Solid. In: Proc. of the International Conference on Parallel Computing in Electrical Engineering (PARELEC 2002), Warsaw, Poland, September 22-25, pp. 253–258. IEEE Computer Society Press, Los Alamitos (2002)CrossRefGoogle Scholar
  5. 5.
    Grochowski, M., Schaefer, R., Uhruski, P.: Diffusion Based Scheduling in the Agent-Oriented Computing Systems. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2004. LNCS, vol. 3019, pp. 97–104. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Momot, J., Kosacki, K., Grochowski, M., Uhruski, P., Schaefer, R.: Multi-Agent System for Irregular Parallel Genetic Computations. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3038, pp. 623–630. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Smoka, M., Uhruski, P., Schaefer, R., Grochowski, M.: The Dynamics of Computing Agent Systems. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2005. LNCS, vol. 3516, pp. 727–734. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Uhruski, P., Grochowski, M., Schaefer, R.: Multi-agent Computing System in a Heterogeneous Network. In: Proc. of the International Conference on Parallel Computing in Electrical Engineering (PARELEC 2002), Warsaw, Poland, September 22-25, pp. 233–238. IEEE Computer Society Press, Los Alamitos (2002)CrossRefGoogle Scholar
  9. 9.
    Sun Microsystems, Java Technology, http://java.sun.com/
  10. 10.
    SLAX, SLAX Linux operating system, http://slax.linux-live.org/
  11. 11.
    CORBA, Object Management Group, http://www.omg.org/
  12. 12.
    Schaefer, R., Flasiński, M., Toporkiewicz, W.: Optimal Stochastic Scaling of CAE Parallel Computations. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS, vol. 1424, pp. 557–564. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  13. 13.
    Norton, C.D., Cwik, T.A.: Parallel Unstructured AMR and Gigabit Networking for Beowulf-Class Clusters. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2001. LNCS, vol. 2328, pp. 552–563. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Mann, V., Parashar, M.: Engineering an interoperable computational collaboratory on the Grid. Concurrency and Computation. Practice and Experience. 14, 1569–1593 (2002)MATHCrossRefGoogle Scholar
  15. 15.
    Papadrakakis, M.: Domain decomposition techniques in Computational Structural Mechanics. In: Papadrakakis, M. (ed.) Parallel Solution Methods in Computational Mechanics, pp. 87–140. John Wiley and Sons, Chichester (1996)Google Scholar
  16. 16.
    Golub, G., Ortega, J.M.: Scientific Computing. An Introduction with Parallel Computing. Academic Press Ltd., London (1993)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • P. Uhruski
    • 1
  • W. Toporkiewicz
    • 1
  • R. Schaefer
    • 1
  • M. Grochowski
    • 1
  1. 1.Computer Science DepartmentAGH University of Science and TechnologyKrakówPoland

Personalised recommendations