Advertisement

A Multilevel Approach to Identify Functional Modules in a Yeast Protein-Protein Interaction Network

  • S. Oliveira
  • S. C. Seok
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3992)

Abstract

Identifying functional modules is believed to reveal most cellular processes. There have been many computational approaches to investigate the underlying biological structures [9, 4, 10, 6]. A spectral clustering method plays a critical role identifying functional modules in a yeast protein-protein network in [6, 4]. We present an unweighted-graph version of a multilevel spectral algorithm which more accurately identifies protein complexes with less computational time.

Keywords

Edge Weight Functional Module Node Weight Multilevel Approach Unweighted Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Diekmann, R., Monien, B., Preis, R.: Quality matching and local improvement for multilevel graph-partitioning. Parallel Comput. 26(12), 1609–1634 (2000)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bornholdt, S., Schuster, H.G. (eds.): Handbook of Graphs and Networks. Wiley VCH, Chichester (2003)MATHGoogle Scholar
  3. 3.
    Meraz, R., Holbrook, S., Ding, C., He, X.: A unified representation for multi-protein complex data for modeling protein interaction networks. Proteins: Structure, Function, and Bioinformatics 57, 99–108 (2004)CrossRefGoogle Scholar
  4. 4.
    Meraz, R.F., Holbrook, S.R., Ding, C., He, X.: A unified representation of multiprotein complex data for modeling interaction networks. Proteins: Structure, Function, and Bioinformatics 57(1), 99–108 (2004)CrossRefGoogle Scholar
  5. 5.
    Xenarios, I., Eisenberg, D., Deane, C.M., Salwinski, L.: Protein interactions: two methods for assessment of the reliability of high throughput observations. Mol. Cell Proteomics 1(5), 349–356 (2002)CrossRefGoogle Scholar
  6. 6.
    Pothen, A., Ramadan, E., Osgood, C.: The architecture of a proteomic network in the yeast. In: International Workshop on Distributed Data Mining in Life Science (LifeDDM 2005) (2005)Google Scholar
  7. 7.
    Fiduccia, C.M., Mattheyses, R.M.: A linear time heuristic for improving network partitions. In: 19th IEEE Design Automation Conference, pp. 175–181 (1982)Google Scholar
  8. 8.
    Gabow, H.N.: Data structures for weighted matching and nearest common ancestors with linking. In: SODA, pp. 434–443 (1990)Google Scholar
  9. 9.
    Hogue, C.W., Bader, G.D.: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4(1) (2003)Google Scholar
  10. 10.
    Ding, C., Zhang, Y., Kumar, V., Holbrook, S., Xiong, H., He, X.: Identification of functional modules in protein complexes via hyperclique pattern discovery. In: Pacific Symposium on Biocomputing (PSB 2005) (2005)Google Scholar
  11. 11.
    Kulis, B., Dhillon, I., Guan, Y.: A fast kernel-based multilevel algorithm for graph clustering. In: The eleventh ACM SIGKDD international conference on Knowledge discovery in data mining (2005)Google Scholar
  12. 12.
    Karypis, G., Kumar, V.: MeTis: Unstrctured Graph Partitioning and Sparse Matrix Ordering System, Version 2.0 (1995)Google Scholar
  13. 13.
    Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. Technical Report 95-035, Department of Computer Science, University of Minnesota, Minneapolis, MN (1998)Google Scholar
  14. 14.
    Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. The Bell System Technical Journal (1970)Google Scholar
  15. 15.
    Newman, M.E.J.: Properties of highly clustered networks. Physics Review 57, 99–108 (2003)Google Scholar
  16. 16.
    Oliveira, S., Seok, S.C.: A multi-level approach for document clustering. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2005. LNCS, vol. 3514, pp. 204–211. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Vazirani, V.: A theory of alternating paths and blossoms for proving correctness of the (sqrt{E}) general graph maximum matching algorithm. Combinatorica 14(1), 71–109 (1994)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • S. Oliveira
    • 1
  • S. C. Seok
    • 1
  1. 1.Department of Computer ScienceUniversity of IowaIowa CityUSA

Personalised recommendations