Advertisement

Numerical Modeling of Tidal Effects and Hydrodymanics in the Po River Estuary

  • Célestin Leupi
  • Michel Deville
  • Mustafa Siddik Altinakar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3992)

Abstract

The present work contributes to the numerical simulation of complex turbulent multiphasic fluid flows encountered in estuarine channels. A numerical solution is based on Reynolds averaged Navier-Stokes equations using the mass preserving model based on the so-called Raviart-Thomas finite element on the unstructured mesh in the horizontal plane. In the vertical, the computational domain is divided into number of layers at predefined heights and the method uses a conventional conforming finite element scheme, with the advantage that the lowermost and uppermost layers variable height allow a faithful representation of the time-varying bed and free surface, respectively. A robust up-to-date algorithm is used for computing the eddy viscosity from the efficient kε turbulence model for variable density fluid flows. Finally, the capability and the predicting performance of the model are successfully evaluated by applying it to the simulation of the Po River Estuary (PRE) in Italy.

Keywords

Finite Element model multiphasic fluid flows kε turbulence model multi-layers system unstructured grid Estuary 

References

  1. 1.
    Casulli, V., Cheng, R.T.: Semi-implicit finite difference methods for three-dimensional shallow-water flow. Int. Numer. Meth. Fluids 15, 629–648 (1992)zbMATHCrossRefGoogle Scholar
  2. 2.
    Chau, K.W., Jiang, Y.W.: 3d numerical model for pearl river estuary. J. Hydr. Engrg. 127, 72–82 (2001)CrossRefGoogle Scholar
  3. 3.
    Chen, Y., Wai, O.W.H., Li, Y.S., Lu, Q.: Three-dimensional numerical modeling of cohesive sediment transport by tidal current in Pearl River Estuary. Int. J. Sediment Res. 14, 107–123 (1999)Google Scholar
  4. 4.
    Graf, W.H., Altinakar, M.S.: Hydraulique Fluviale, Tome II. Presses Polytechniques et Universitaires Romandes, CH-1015 Lausanne, Switzerland (1996)Google Scholar
  5. 5.
    Leupi, C.: Numerical Modeling of Cohesive Sediment Transport and Bed Morphology in Estuaries. PhD thesis, Ecole Polytechnique Fédérale de Lausanne-EPFL, No. 3266 (2005)Google Scholar
  6. 6.
    Leupi, C., Altinakar, M.S.: Finite element modeling of free-surface flows with non-hydrostatic pressure and k − ε turbulence model. Int. J. Numer. Meth. Fluids (2005) (in press)Google Scholar
  7. 7.
    Leupi, C., Miglio, E., Altinakar, M., Quarteroni, A., Deville, M.: Quasi-3D finite element shallow-water flow with k − ε turbulence model. In: Altinakar, M.S., Wang, S.S.Y., Holz, K.P., Kawahara, M. (eds.) Proc. of 6th Int. Conf. Hydro-Science and Engrg, 6, 400-402 & on CD-Rom, Brisbane, Australia, May 31, June 03 (2004); ICHE, SWang S. Y., NCCHE, University of Mississippi, Carrier Hall, University, MS38677, USAGoogle Scholar
  8. 8.
    Lie-Yauw, O., Mellor, L.G.: A three-dimensional simulation of the hudson-raritan estuary. part i: Comparison with observation. J. Phys. Ocean. 15, 1693–1709 (1985)CrossRefGoogle Scholar
  9. 9.
    Lie-Yauw, O., Mellor, L.G.: A three-dimensional simulation of the hudson-raritan estuary. part i: Description of the model and model simulations. J. Phys. Ocean. 15, 1676–1692 (1985)CrossRefGoogle Scholar
  10. 10.
    Lu, Q.M., Wai, W.H.O.: An efficient operator splitting scheme for three-dimensional hydrodynamics computations. Int. J. Numer. Methods Fluids 26, 771–789 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Luyten, P.J., Deleesnijder, E., Ozer, J., Ruddick, K.G.: Presentation of a family of turbulence closure models for stratified shallow water flows and preliminary application to the Rhine outflow region. Continental Shelf Res. 16, 101–130 (1996)CrossRefGoogle Scholar
  12. 12.
    Mohammadi, B., Pironneau, O.: Analysis of k − ε Turbulence Model. Research in Applied Mathematics. John Wiley & Sons, Chichester (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Célestin Leupi
    • 1
  • Michel Deville
    • 1
  • Mustafa Siddik Altinakar
    • 2
  1. 1.ISE-STI-LINEcole Polytechnique FédéraleLausanneSwitzerland
  2. 2.NCCHEThe University of MississipiUSA

Personalised recommendations