Numerical Modelling of Poroviscoelastic Grounds in the Time Domain Using a Parallel Approach

  • Arnaud Mesgouez
  • Gaëlle Lefeuve-Mesgouez
  • André Chambarel
  • Dominique Fougère
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3992)


In this paper, we present a parallelized finite element code developed to study wave propagation phenomena, specifically in porous soils problems which usually require millions of degrees of freedom. The parallelization technique uses an algebraic grid partitioning managed by a Single Program Multiple Data (SPMD) programming model. Message Passing Interface (MPI) library specification is the standard used to exchange data between processors. The architecture of the code is explained and numerical results show its performance.


Porous Medium Message Passing Interface Domain Decomposition Method Elastodynamic Problem Biot Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. I- Low-frequency range. J. Acoust. Soc. Am. 28(2), 168–178 (1956)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Coussy, O.: Mécanique des milieux poreux. Paris: Ed. Technip. (1991)Google Scholar
  3. 3.
    Zienkiewicz, O.C., Shiomi, T.: Dynamic behaviour of saturated porous media: the generalized Biot formulation and its numerical solution. Int. J. Numer. Anal. Methods Geomech 8, 71–96 (1984)zbMATHCrossRefGoogle Scholar
  4. 4.
    Simon, B.R., Wu, J.S.S., Zienkiewicz, O.C., Paul, D.K.: Evaluation of u-w and u-π finite element methods for the dynamic response of saturated porous media using one-dimensional models. Int. J. Numer. Anal. Methods Geomech 10, 461–482 (1986)zbMATHCrossRefGoogle Scholar
  5. 5.
    Gajo, A., Saetta, A., Vitaliani, R.: Evaluation of three and two field finite element methods for the dynamic response of saturated soil. Int. J. Numer. Anal. Methods Geomech 37, 1231–1247 (1994)zbMATHGoogle Scholar
  6. 6.
    Papadrakakis, M., Bitzarakis, S.: Domain decomposition PCG methods for serial and parallel processing. Adv. Eng. Softw. 25, 291–307 (1996)CrossRefGoogle Scholar
  7. 7.
    Lirkov, I.: MPI solver for 3D elasticity problems. Math. Comput. Simul. 61, 509–516 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bohlen, T.: Parallel 3-D viscoelastic finite difference seismic modelling. Comput. Geosci. 28, 887–899 (2002)CrossRefGoogle Scholar
  9. 9.
    Mesgouez, A., Lefeuve-Mesgouez, G., Chambarel, A.: Simulation of transient mechanical wave propagation in heterogeneous soils. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2005. LNCS, vol. 3514, pp. 647–654. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Terada, K., Ito, T., Kikuchi, N.: Characterization of the mechanical behaviors of solid-fluid mixture by the homogenization method. Comput. Methods Appl. Mech. Eng. 153, 223–257 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Coussy, O., Dormieux, L., Detournay, E.: From Mixture theory to Biot’s approach for porous media. Int. J. Solids Struct. 35, 4619–4635 (1998)zbMATHCrossRefGoogle Scholar
  12. 12.
    Mesgouez, A., Lefeuve-Mesgouez, G., Chambarel, A.: Transient mechanical wave propagation in semi-infinite porous media using a finite element approach. Soil Dyn. Earthq. Eng. 25, 421–430 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Arnaud Mesgouez
    • 1
  • Gaëlle Lefeuve-Mesgouez
    • 1
  • André Chambarel
    • 1
  • Dominique Fougère
    • 2
  1. 1.UMR A Climate, Soil and EnvironmentUniversité d’Avignon, Faculté des SciencesAvignonFrance
  2. 2.UMR 6181 Modélisation et Simulation Numérique en Mécanique et Génie des, ProcédésMarseilleFrance

Personalised recommendations