Advertisement

Development of SyNRAC

–Real Quantifier Elimination Based on Cylindrical Algebraic Decomposition and Visialization–
  • Hitoshi Yanami
  • Hirokazu Anai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3992)

Abstract

We present newly implemented functions in SyNRAC, which is a Maple package for solving real algebraic constraints derived from various engineering problems. The current version of SyNRAC has added quantifier elimination (QE) by cylindrical algebraic decomposition (CAD), a general QE procedure. We also show a visualization tool for representing the possble region of an output quantifier-free formula for the two-dimensional case.

Keywords

Symbolic Computation Atomic Formula Conjunctive Normal Form Disjunctive Normal Form Integral Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Anai, H., Yanami, H.: syNRAC: A maple-package for solving real algebraic constraints. In: Sloot, P.M.A., et al. (eds.) ICCS 2003. LNCS, vol. 2657, pp. 828–837. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Yanami, H., Anai, H.: Development of syNRAC—formula description and new functions. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3039, pp. 286–294. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Weispfenning, V.: The complexity of linear problems in fields. Journal of Symbolic Computation 5, 3–27 (1988)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Loos, R., Weispfenning, V.: Applying linear quantifier elimination. The Computer Journal Special issue on computational quantifier elimination 36, 450–462 (1993)MathSciNetMATHGoogle Scholar
  5. 5.
    Weispfenning, V.: Quantifier elimination for real algebra—the quadratic case and beyond. Applicable Algebra in Engineering Communication and Computing 8, 85–101 (1997)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Hong, H.: Quantifier elimination for formulas constrained by quadratic equations. In: Bronstein, M. (ed.) Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC 1993), Kiev, Ukraine, pp. 264–2747. ACM Press, New York (1993)CrossRefGoogle Scholar
  7. 7.
    González-Vega, L.: A combinatorial algorithm solving some quantifier elimination problems. In: Caviness, B., Johnson, J. (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts and Monographs in Symbolic Computation, pp. 365–375. Springer, New York (1998)Google Scholar
  8. 8.
    Weispfenning, V.: Applying quantifier elimination to problems in simulation and optimization. Technical Report MIP-9607, FMI, Universitát Passau, D-94030 Passau, Germany, To appear in the Journal of Symbolic Computation (1996)Google Scholar
  9. 9.
    Sturm, T., Weispfenning, V.: Rounding and blending of solids by a real elimination method. In: Sydow, A. (ed.) Proceedings of the 15th IMACS World Congress on Scientific Computation, Modelling, and Applied Mathematics (IMACS 1997) IMACS, vol. 2, pp. 727–732. Wissenschaft & Technik Verlag, Berlin (1997)Google Scholar
  10. 10.
    Dolzmann, A., Sturm, T., Weispfenning, V.: Real quantifier elimination in practice. In: Matzat, B.H., Greuel, G.M., Hiss, G. (eds.) Algorithmic Algebra and Number Theory, pp. 221–247. Springer, Berlin (1998)Google Scholar
  11. 11.
    González-Vega, L.: Applying quantifier elimination to the Birkhoff interpolation problem. Journal of Symbolic Computation (1996) (to appear)Google Scholar
  12. 12.
    Anai, H., Hara, S.: Fixed-structure robust controller synthesis based on sign definite condition by a special quantifier elimination. In: Proceedings of American Control Conference 2000, pp. 1312–1316 (2000)Google Scholar
  13. 13.
    Anai, H., Yanami, H., Sakabe, K., Hara, S.: Fixed-structure robust controller synthesis based on symbolic-numeric computation: design algorithms with a cacsd toolbox (invited paper). In: Proceedings of CCA/ISIC/CACSD 2004, Taipei, Taiwan, pp. 1540–1545 (2004)Google Scholar
  14. 14.
    Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Caviness, B., Johnson, J. (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts and Monographs in Symbolic Computation, pp. 85–121. Springer, New York (1998)Google Scholar
  15. 15.
    Hong, H.: An improvement of the projection operator in cylindrical algebraic decomposition. In: Caviness, B., Johnson, J. (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts and Monographs in Symbolic Computation, pp. 166–173. Springer, New York (1998)Google Scholar
  16. 16.
    McCallum, S.: An improved projection operation for cylindrical algebraic decomposition. In: Caviness, B., Johnson, J. (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts and Monographs in Symbolic Computation, pp. 242–268. Springer, New York (1998)Google Scholar
  17. 17.
    Brown, C.W.: Improved projection for cylindrical algebraic decomposition. Journal of Symbolic Computation 32, 447–465 (2001)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Anai, H., Yokoyama, K.: Numerical cylindrical algebraic decomposition with certificated reconstruction. In: Proceedings of 11th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic, and Validated Numerics, Fukuoka, Japan, vol. 31 (2004)Google Scholar
  19. 19.
    Duval, D.: Algebraic numbers: an example of dynamic evaluation. Journal of Symbolic Computation 18, 429–445 (1994)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Duval, D., González-Vega, L.: Dynamic evaluation and real closure. Math. Comput. Simulation 42(4-6), 551–560 (1996)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Hong, H.: An efficient method for analyzing the topology of plane real algebraic curves. In: Selected papers presented at the international IMACS symposium on Symbolic computation, new trends and developments, pp. 571–582. Elsevier Science Publishers B. V., /Springer, Amsterdam (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hitoshi Yanami
    • 1
    • 2
  • Hirokazu Anai
    • 1
    • 2
  1. 1.Information Technology Core LaboratoriesFujitsu Laboratories Ltd.Nakahara-ku, KawasakiJapan
  2. 2.CRESTJapan Science and Technology AgencyKawaguchiJapan

Personalised recommendations