A Multilevel-Multigrid Approach to Multiscale Electromagnetic Simulation

  • Peter Chow
  • Tetsuyuki Kubota
  • Takefumi Namiki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3992)


The time-dependent Maxwell’s equations are solved for mobile device applications using a multilevel-multigrid finite-difference time-domain (FDTD) method. For three-dimensional models that simulate system level details of mobile devices, the smallest features are in the nanometre (10− − 9 m) range, leading to a time-step size in the attosecond (10− − 18 s) range. The feature sizes of mobile devices are in the centimetre (10− − 2 m) range, while for health and safety studies that include human models features are in the metre range.


Mobile Device Grid Model Cartesian Grid FDTD Method Microwave Theory Tech 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Yee, K.S.: Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media. IEEE Trans. Antennas Propagation 14, 302–307 (1996)Google Scholar
  2. 2.
    Taflove, A.: Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, Boston (1995)Google Scholar
  3. 3.
    Kim, I.S., Hoefer, W.J.R.: A Local Mesh Refinement Algorithm for the Time Domain Finite Difference Method Using Maxwell’s Curl Equations. IEEE Trans. Microwave Theory Tech. 38, 812–815 (1990)CrossRefGoogle Scholar
  4. 4.
    Zivanovic, S.S., Yee, K.S., Mei, K.K.: A Subgridding Method for the Time-Domain Finite-Difference Method to Solve Maxwell’s Equations. IEEE Trans. Microwave Theory Tech. 39, 471–479 (1991)CrossRefGoogle Scholar
  5. 5.
    Monk, P.: Sub-Gridding FDTD Schemes. J. Applied Computational Electromagnetic Society 11, 37–46 (1996)Google Scholar
  6. 6.
    Thomas, P., Weiland, T.: A Consistent Subgridding Scheme for the Finite Difference Time Domain Method. Int. J. Numerical Modelling: Electronic Networks, Devices & Fields 9, 359–374 (1996)CrossRefGoogle Scholar
  7. 7.
    Chevalier, M.W., Luebbers, R.J., Cable, V.P.: FDTD Local Grid with Material Traverse. IEEE Trans. Antennas Propagation 45, 411–421 (1997)CrossRefGoogle Scholar
  8. 8.
    Okoniewski, M., Okoniewska, E., Stuchly, M.A.: Three-Dimensional Subgridding Algorithm for FDTD. IEEE Trans. Antennas Propagation 45, 422–429 (1997)CrossRefGoogle Scholar
  9. 9.
    White, M.J., Yun, Z., Iskander, M.F.: A New 3D FDTD Multigrid Technique with Dielectric Traverse Capabilities. IEEE Trans. Microwave Theory Tech. 49, 422–430 (2001)CrossRefGoogle Scholar
  10. 10.
    Chow, P., Kubota, T., Namiki, T.: A Block-Solve Multigrid-FDTD Method. To appear in the 22nd International Review of Progress in Applied Computational Electromagnetics (ACES 2006) conference, Miami, Florida, USA (March 2006)Google Scholar
  11. 11.
    Chaillou, S., Wiart, J., Tabbara, W.: A Subgridding Scheme Based on Mesh Nesting for FDTD Method. Microwave and Optical Technology Letters 22, 211–214 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Peter Chow
    • 1
  • Tetsuyuki Kubota
    • 2
  • Takefumi Namiki
    • 3
  1. 1.Fujitsu Laboratories of EuropeHayesUnited Kingdom
  2. 2.Corporate Component Engineering CenterFujitsu LimitedNakahara-ku, KawasakiJapan
  3. 3.Computational Science and Engineering Solutions CenterFujitsu LimitedChibaJapan

Personalised recommendations