Advertisement

Robustly Computing Intersection Curves of Two Canal Surfaces with Quadric Decomposition

  • Jinyuan Jia
  • Ajay Joneja
  • Kai Tang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3992)

Abstract

This paper revisits the intersection problems of two canal surfaces with a new quadric decomposition we proposed for canal surfaces. It reduces computing intersection curves of two canal surfaces to computing intersection curves of two revolute quadrics. Furthermore, Bounding Cylinder Clipping is proposed for efficient intersection determination. Compared to the existing method, our method can (i) run more robustly and efficiently; (ii) represent the final intersection curves as a piecewise closed-form RQIC; and (iii) give a simple shape analysis.

Keywords

Subdivision Scheme Intersection Curve Surface Intersection Intersection Problem Ringed Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Dupont, L., Lazard, D., Lazard, S., Petitjean, S.: Towards The Robust Intersection of Implicit Quadrics. In: Proc. of Workshop on Uncertainty in Geometric Computations, Sheffield, UK (2001)Google Scholar
  2. 2.
    Dupont, L., Lazard, D., Lazard, S., Petitjean, S.: Near-Optimal Parameterization of the Intersection of Quadrics. In: ACM Symposium on Computational Geometry, San Diego, USA (2003)Google Scholar
  3. 3.
    Elber, G.: IRIT Software, The Technion-IIT, Haifa, Israel (1993), http://www.cs.technion.ac.il/~irit/
  4. 4.
    David, E.: Intersection of two cylinders. Magic Software Company (2000), http://www.magic-software.com/Intersection.html
  5. 5.
    Goldman, R.N.: Quadrics of Revolution. IEEE Computer Graphics and Applications 3(2), 68–76 (1983)CrossRefGoogle Scholar
  6. 6.
    Heo, H.S., Hong, S.J., Seong, J.K., Kim, M.S.: The Intersection of Two Ringed Surfaces and Some Related Problems. Graphical Model 63(4), 228–244 (2001)MATHCrossRefGoogle Scholar
  7. 7.
    Johnstone, J.: A New Intersection Algorithm for Cyclides and Swept Surfaces Using Circle Decomposition. CAGD 10(1), 1–24 (1993)MathSciNetMATHGoogle Scholar
  8. 8.
    Jia, J., Tang, K., Joneja, A., Kwok, K.W.: New Algorithm of Computing Planar Sections of Surfaces of Revolution Based on Revolute Quadric Subdivision. In: Proc. of Shape Modeling and Applications, Genova, Italy (2004)Google Scholar
  9. 9.
    Jia, J., Baciu, G., Kwok, K.W.: Revolute Quadric Decomposition for Computing Intersection Curves of Surfaces of Revolution. Graphical Model 55(5), 363–383 (2004)Google Scholar
  10. 10.
    Jia, J., Tang, K., Joneja, A.: Bi-Conic Subdivision for Surfaces of Revolution and Its Applications to Intersection Problems. The Visual Computer 20(7), 457–478 (2004)CrossRefGoogle Scholar
  11. 11.
    Jia, J., Joneja, A., Tang, K.: Revolute Quadric Decomposition of Canal Surfaces and Its Application. LNCS, vol. 3514, pp. 213–222. Springer, Heidelberg (2005)Google Scholar
  12. 12.
    Kim, M.S.: Intersecting Surfaces of Special Types. In: Proc. of Shape Modeling and Processing, University of Aizu, Japan, pp. 122–128 (1999)Google Scholar
  13. 13.
    Levin, J.Z.: A Parametric Algorithm for Drawing Pictures of Solid Objects Composed of Quadrics. Communications of the ACM 19(10), 555–563 (1976)MATHCrossRefGoogle Scholar
  14. 14.
    Levin, J.Z.: Mathematical Models for Determining The Intersections of Quadric Surfaces. Computer Graphics and Image processing 1, 73–87 (1979)CrossRefGoogle Scholar
  15. 15.
    Max, N.: Cone-Spheres. In: ACM SIGGRAPH Computer Graphics, vol. 24, pp. 59–62 (1990)Google Scholar
  16. 16.
    Patrikalakis, N.M., Maekawa, T.: Shape Interrogation in Computer Aided Design and Manufacturing. Springer, Heidelberg (2002)Google Scholar
  17. 17.
    Seong, J.K., Kim, K.J., Kim, M.S., Elber, G.: Intersecting a Freeform Surface with a Ruled or a Ringed Surface. In: Proceedings of Geometric Modeling and Processing, Beijing, pp. 38–45 (2004)Google Scholar
  18. 18.
    Wang, W., Goldman, R., Tu, C.: Enhancing Levin’s Method for Computing Quadric-Surface Intersections. CAGD 20(7), 401–422 (2003)MathSciNetMATHGoogle Scholar
  19. 19.
    Wang, W., Joe, B., Goldman, R.: Computing Quadric Surface Intersections Based on An Analysis on Plane Cubic Curves. Graphical Model 64(6), 335–367 (2003)CrossRefGoogle Scholar
  20. 20.
    Paluszny, M., Bühler, K.: Canal Surfaces and Inversive Geometry. In: Daehlen, M., Lyche, T., Schumaker, L. (eds.) Mathematical Methods for Curves and Surfaces II, pp. 367–375 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jinyuan Jia
    • 1
  • Ajay Joneja
    • 2
  • Kai Tang
    • 2
  1. 1.Zhuhai College of Jilin UniversityZhuhaiP. R. China
  2. 2.The Hong Kong University of Science and TechnologyKowloon, Hong KongP. R. China

Personalised recommendations