Statistical Based Vectorization for Standard Vector Graphics

  • Sebastiano Battiato
  • Giovanni Maria Farinella
  • Giovanni Puglisi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3992)


In this paper a novel algorithm for raster to vector conversion is presented. The technique is mainly devoted to vectorize digital picture maintaining an high degree of photorealistic appearance specifically addressed to the human visual system. The algorithm makes use of an advanced segmentation strategy based on statistical region analysis together with a few ad-hoc heuristics devoted to track boundaries of segmented regions. The final output is rendered by Standard Vector Graphics. Experimental results confirm the effectiveness of the proposed approach both in terms of perceived and measured quality. Moreover, the final overall size of the vectorized images outperforms existing methods.


Close Curve Segmented Region Counter Clockwise Direction Scalable Vector Graphic Border Pixel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Duce, D., Herman, I., Hopgood, B.: Web 2D Graphics File Format. Computer Graphics forum 21(1), 43–64 (2002)zbMATHCrossRefGoogle Scholar
  2. 2.
    Rabaud, V., Belongie, S.: Big Little Icons. In: CVAVI, San Diego, CA (2005)Google Scholar
  3. 3.
    Vantighem, C., Laurent, N., Deckeur, D., Plantinet, V.: Vector eye, Copyright SIAME e Celinea (2003),,
  4. 4.
    Weber, M.: Autotrace 0.31, GNU General Public License (2002),
  5. 5.
    Kuhl, K.: Kvec 2.99, Copyright KK-Software (2003),
  6. 6.
    Battiato, S., Costanzo, A., Di Blasi, G., Nicotra, S.: SVG Rendering by Watershed Decomposition. In: Proceeding of SPIE Electronic Imaging-Internet Imaging VI, vol. 5670.3 (2005)Google Scholar
  7. 7.
    Battiato, S., Barbera, G., Di Blasi, G., Gallo, G., Messina, G.: Advanced SVG Triangulation Polygonalization of Digital Images. In: Proceeding of SPIE Electronic Imaging-Internet Imaging VI, vol. 5670.1 (2005)Google Scholar
  8. 8.
    Battiato, S., Di Blasi, G., Gallo, G., Messina, G., Nicotra, S.: SVG Rendering for Internet Imaging. In: Proceeding of IEEE CAMP 2005, International Workshop on Computer Architecture for Machine Perception, Palermo, Italy, pp. 333–338 (2005)Google Scholar
  9. 9.
    Prasad, L., Skourikhine, A.: Raster to Vector Conversion of Images for Efficient SVG Representation. In: Proceedings of SVGOpen 2005, NL (2005)Google Scholar
  10. 10.
    Nock, R., Nielsen, F.: Statistical Region Merging. IEEE Transaction on Pattern Analysis and Machine Intelligence 26(11), 1452–1458 (2004)CrossRefGoogle Scholar
  11. 11.
    Lucchese, L., Mitra, S.: Color Image Segmentation: A State-of-the-Art Survey. In: Proc. of the Indian National Science Academy(INSA-A), vol. 67 A, pp. 207–221 (2001)Google Scholar
  12. 12.
    World Wide Web Consortium: Scalable Vector Graphics (SVG) 1.1 Specification (2003),

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sebastiano Battiato
    • 1
  • Giovanni Maria Farinella
    • 1
  • Giovanni Puglisi
    • 1
  1. 1.Dipartimento di Matematica e Informatica, Image Processing LaboratoryUniversity of CataniaItaly

Personalised recommendations