Metric 3D Surface Mesh Generation Using Delaunay Criteria

  • Tomasz Jurczyk
  • Barbara Głut
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3992)


This paper presents a technique of incorporating anisotropic metric into the Delaunay triangulation algorithm for unstructured mesh generation on 3D parametric surfaces. Both empty circumcircle and inner angles criteria of Delaunay retriangulation can be successfully used with the developed method of coordinate transformation with little adjustments. We investigate the efficiency of mesh generation process for different criteria and the quality of obtained meshes.


Angle Criterion Mesh Generation Delaunay Triangulation Surface Patch Control Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    George, P.L., Borouchaki, H.: Delaunay Triangulation and Meshing. Applications to Finite Elements. Hermès, Paris (1998)Google Scholar
  2. 2.
    Dolejsi, V.: Anisotropic mesh adaptation for finite volume and element methods on triangular meshes. Comput. Visual Sci. 1, 165–178 (1998)zbMATHCrossRefGoogle Scholar
  3. 3.
    Frey, P.: Anisotropic metrics for mesh adaptation. In: Proc. ECCOMAS 2004, Jyvaskyla, Finland July 24–28 (2004)Google Scholar
  4. 4.
    Bottasso, C.: Anisotropic mesh adaptation by metric-driven optimization. Int. J. Numer. Meth. Engng. 60, 597–639 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Vigo, M., Pla, N.: Computing directional constrained Delaunay triangulations. Computers & Graphics 24, 181–190 (2000)CrossRefGoogle Scholar
  6. 6.
    Głut, B., Jurczyk, T.: Definition and interpolation of discrete metric for mesh generation on 3d surfaces. In: Computer Science, Annual of University of Mining and Metallurgy (2005) (in press)Google Scholar
  7. 7.
    Jurczyk, T., Głut, B.: Metric 3D surface mesh generation using coordinate transformation method. In: Proc. of CMS 2005 Conference on Computer Methods and Systems, Kraków, Poland, vol. 1, pp. 395–405 (2005)Google Scholar
  8. 8.
    Jurczyk, T., Głut, B.: Generation of good quality quadrilateral elements for anisotropic surface meshes. In: Proc. of ADMOS 2003 Conference on Adaptive Modeling and Simulation, Goeteborg, Sweden (2003)Google Scholar
  9. 9.
    Lo, S., Lee, C.: Generation of gradation meshes by the background grid technique. Computers & Structures 50(1), 21–32 (1994)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Tomasz Jurczyk
    • 1
  • Barbara Głut
    • 1
  1. 1.AGH University of Science and TechnologyKrakówPoland

Personalised recommendations