Flow Patterns in the Vicinity of Triple Line Dynamics Arising from a Local Surface Tension Model

  • J. Monnier
  • I. Cotoi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3992)


We model and simulate numerically a droplet impact onto a solid substrate. The triple line dynamics modelling is implicit (as opposed to classical explicit mobility relations), it is based on the Shikhmurzaev equations. These equations include generalized Navier slip type boundary conditions with extra local surface tension gradient terms. Numerical results when spreading and recoiling are presented. A particular attention is paid to flow patterns near the contact line.


  1. 1.
    Allaman, S., Desie, G., Vadillo, D., Soucemarianadin, A.: Impact and spreading of micro-drops onto solid substrates. Mécaniques & Industries 4, 443–455 (2003)CrossRefGoogle Scholar
  2. 2.
    Blake, T.D., Bracke, M., Shikhmurzaev, Y.D.: Experimental evidence of nonlocal hydrodynamic influence on the dynamic contact angle. Physics of fluids 11, 1995–2007 (1999)zbMATHCrossRefGoogle Scholar
  3. 3.
    de Gennes, P.G.: Wettings: statics and dynamics. Reviews Modern Phys. 57, 827–863 (1985)CrossRefGoogle Scholar
  4. 4.
    Dussan, V.E.B., Davis, S.H.: On the motion of a fluid-fluid interface along a solid surface. J. Fluid Mech. 65, 71–95 (1974)zbMATHCrossRefGoogle Scholar
  5. 5.
    Hocking, L.M.: A moving fluid interface. Part II. The removal of the force singularity by a slip flow. J. Fluid Mech. 79, 209–229 (1977)zbMATHGoogle Scholar
  6. 6.
    Jacqmin, D.: Contact-line dynamics of a diffuse fluid interface. J. Fluid. Mech. 402, 57–88 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Monnier, J.: Modélisation Numérique de la Ligne Triple. Internal Report LMC-IMAG, Summer school CEA Grenoble (September 2003)Google Scholar
  8. 8.
    Monnier, J., Witomski, P.: Analysis of a Local Hydrodynamic Model with Marangoni Effect. J. Sc. Comp. 21, 369–403 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Pomeau, Y.: Recent progress in the moving contact line problem: a review. C.R. Mécanique 330, 207–222 (2002)zbMATHCrossRefGoogle Scholar
  10. 10.
    Shikhmurzaev, Y.D.: The moving contact line problem on a smooth solid surface. Int. J. Multiphase Flow 19, 589–610 (1993)zbMATHCrossRefGoogle Scholar
  11. 11.
    Qian, T., Wang, X.-P., Sheng, P.: Generalized Navier boundary condition for the moving contact line. Comm. Math. Sci. 1, 333–341 (2003)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • J. Monnier
    • 1
  • I. Cotoi
    • 1
  1. 1.Laboratoire de Modelisation et Calcul (LMC-IMAG), Project-Team IDOPTGrenoble Cedex 9France

Personalised recommendations