Multiresolution Remeshing Using Weighted Centroidal Voronoi Diagram

  • Chao-Hung Lin
  • Chung-Ren Yan
  • Ji-Hsen Hsu
  • Tong-Yee Lee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3992)


We present a novel method for multiresolution remeshing of irregular mesh. First, the original mesh (two-manifold any genus) is decomposed into several patches, each patch is homeomorphic to a 2D triangle. The goal of this decomposition process is that the decomposed patches are size-equally. First, a mesh is manually cut into a few disk-like patches. With the help of weighted centroidal Voronoi diagram (WCVD), each patch is then automatically partitioned into more triangular patches with nearly equal size. Recursively subdividing these triangular patches, we finally get a semi-regular mesh.


Parameterization Remeshing Voronoi Diagram Resampling 


  1. 1.
    Lee, A.W.F., Dobkin, D., Sweldens, W., Schroder, P.: MAPS: Multiresolution Adaptive Parameterization of Surfaces. In: ACM SIGGRAPH 1998, pp. 95–104 (1998)Google Scholar
  2. 2.
    Guskov, I., Sweldens, W., Schroder, P.: Multiresolution Signal Processing for Meshes. In: ACM SIGGRAPH 1999, pp. 325–334 (1999)Google Scholar
  3. 3.
    Khodakovsky, A., Litke, N., Schroder, P.: Globally Smooth Parameterizations with Low Distortion. In: ACM SIGGRAPH 2003, pp. 350–357 (2003)Google Scholar
  4. 4.
    Kobbelt, L., Bareuther, T., Seidel, H.-P.: Multiresolution shape deformations for meshes with dynamic vertex connectivity. Computer Graphics Forum 19(3), 249–260 (2000)CrossRefGoogle Scholar
  5. 5.
    Turk, G.: Re-tiling polygonal surfaces. In: ACM SIGGRAPH 1992, vol. 26, pp. 55–64 (1992)Google Scholar
  6. 6.
    Vorsatz, J., Rossl, C., Kobbelt, L.P., Seidel, H.-P.: Feature Sensitive Remeshing. In: Proceedings of EUROGRAPHICS 2001, pp. 393–401 (2001)Google Scholar
  7. 7.
    Alliez, P., Meyer, M., Desbrun, M.: Interactive Geometry Remeshing. In: ACM SIGGRAPH 2002, pp. 347–354 (2002)Google Scholar
  8. 8.
    Lin, C.-H., Lee, T.-Y.: Metamorphosis of 3D Polyhedral Models Using Progressive Connectivity Transformations. IEEE Transactions on Visualization and Computer Graphics 11(1), 2–12 (2005)CrossRefGoogle Scholar
  9. 9.
    Lee, T.-Y., Hung, P.-H.: Fast and Intuitive Metamorphosis of 3D Polyhedral Models Using SMCC Mesh Merging Scheme. IEEE Transactions of Visualization and Computer Graphics 9(1), 85–98 (2003)CrossRefGoogle Scholar
  10. 10.
    Hoff, K.E., Culver, T., Keyser, J., Lin, M., Manocha, D.: Fast Computation of Generalized Voronoi Diagrams Using Graphics Hadware. In: ACM SIGGRAPH 1999, pp. 277–286 (1999)Google Scholar
  11. 11.
    Lloyd, S.: Least Square Quantization in PCM. IEEE Transactions on Information Theory 28, 129–137 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Sender, P., Snyder, J., Gortler, S., Hoppe, H.: Texture Mapping Progressive Meshes. In: ACM SIGGRAPH 2001, pp. 409–416 (2001)Google Scholar
  13. 13.
    Secord, A.: Weighted Voronoi Stippling. In: Proceedings of NPAR (2002)Google Scholar
  14. 14.
    Surazhsky, V., Alliez, P., Gotsman, C.: Isotropic Remeshing of Surfaces: A Local Parameterization Approach. In: Proceedings, 12th International Meshing Roundtable, Sandia National Laboratories, pp. 215–224 (September 2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Chao-Hung Lin
    • 1
  • Chung-Ren Yan
    • 2
  • Ji-Hsen Hsu
    • 2
  • Tong-Yee Lee
    • 2
  1. 1.Dept. of GeomaticsNational Cheng Kung UniversityTaiwan
  2. 2.Dept. of Computer Science and Information EngineeringNational Cheng Kung UniversityTaiwan

Personalised recommendations