Advertisement

A New Smoothing Algorithm for Quadrilateral and Hexahedral Meshes

  • Sanjay Kumar Khattri
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3992)

Abstract

Mesh smoothing (or r-refinement) are used in computer aided design, interpolation, numerical solution of partial differential equations, etc. We derive a new smoothing called parallelogram smoothing. The new smoothing tries to fit a given domain by the parallelograms. We present several numerical examples and compare our results against the traditional Laplacian smoothing. Presented numerical work shows that the new approach is superior to the Laplacian smoothing.

Keywords

Quadrilateral Element Inverted Element Hexahedral Element Hexahedral Mesh Quadrilateral Mesh 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hermansson, J., Hansbo, P.: A variable diffusion method for mesh smoothing. Comm. Numer. Methods Engrg. 19, 897–908 (2003)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Daniel, W., Garry, R.: Improved vector FEM solutions of Maxwell’s equations using grid pre-conditioning. Internat. J. Numer. Methods Engrg. 40, 3815–3837 (1997)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Ding, Y., Xia, J., Wang, Y., Xiao, J.: Fully automatic generation of finite element mesh. Progr. Natur. Sci (English Ed.) 5, 93–98 (1995)MathSciNetGoogle Scholar
  4. 4.
    O’Sullivan, F.: Discretized Laplacian smoothing by Fourier methods. J. Amer. Statist. Assoc. 86, 634–642 (1991)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Hansbo, P.: Generalized Laplacian smoothing of unstructured grids. Communications in Numerical Methods in Engineering 11, 455–464 (1995)MATHCrossRefGoogle Scholar
  6. 6.
    Field, D.A.: Laplacian smoothing and Delaunay triangulations. Communications in Applied Numerical Methods 4, 709–712 (1998)CrossRefGoogle Scholar
  7. 7.
    Floater, M.S.: Mean value coordinates. Computer Aided Geometric Design 20, 19–27 (2003)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Khodakovsky, A., Litke, N., Schröder, P.: Globally smooth parameterizations with low distortion. ACM Transactions on Graphics (TOG) 22 (2003)Google Scholar
  9. 9.
    Sheffer, A., Sturler, E.D.: Smoothing an overlay grid to minimize linear distortion in texture mapping. ACM Transactions on Graphics (TOG) 21, 874–890 (2002)CrossRefGoogle Scholar
  10. 10.
    Mallet, J.L.: Discrete smooth interpolation. ACM Transactions on Graphics (TOG) 8, 121–144 (1998)CrossRefGoogle Scholar
  11. 11.
    Bank, R.E., Smith, R.K.: Mesh smoothing using a posteriori error estimates. SIAM J. Numer. Anal. 34, 979–997 (1997)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Frey, W.H., Field, D.A.: Mesh relaxation: a new technique for improving triangulations. Internat. J. Numer. Methods Engrg. 31, 1121–1133 (1991)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Shontz, S.M., Vavasis, S.A.: A linear weighted laplacian smoothing framework for warping tetrahedral meshes. Submitted to SIAM Journal on Scientific Computing on July 17, for publication (2004) Available on line at http://arxiv.org/abs/cs.NA/0410045
  14. 14.
    Knupp, P.M.: Winslow smoothing on two-dimensional unstructured meshes. In: Proceedings, 7th International Meshing Roundtable, Sandia National Lab, pp. 449–457 (1998)Google Scholar
  15. 15.
    Hægland, H., Dahle, H.K., Eigestad, G.T., Lie, K.A., Aavatsmark, I.: Improved Streamlines and Time of Flight for Streamline Simulation on Irregular Grids. Submitted in Journal. Available on line at (October 2005), http://heim.ifi.uio.no/~kalie/papers/cvi-sl.pdf
  16. 16.
    Khattri, S.K.: Analyzing Finite Volume for Single Phase Flow in Porous Media. Journal of Porous Media, Accepted for Publication (2006)Google Scholar
  17. 17.
    Persson, P.-O., Strang, G.: A Simple Mesh Generator in MATLAB. SIAM Review 46(2), 329–345 (2004)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sanjay Kumar Khattri
    • 1
  1. 1.Department of MathematicsUniversity of BergenNorway

Personalised recommendations