Advertisement

Data-Driven Inverse Modelling of Ionic Polymer Conductive Composite Plates

  • John G. Michopoulos
  • Moshen Shahinpoor
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3992)

Abstract

Analytical solutions of the partial differential equations (PDEs) governing the behavior of ionic polymer plates have not been yet obtained and therefore only time consuming discrete numerical methods can be used instead. To avoid the computational cost of numerical solutions this paper introduces a solution construction method that exploits analytical approximation basis functions borrowed from solutions of single physics formulations associated with rectangular ionic polymer plates for artificial muscle applications. This is achieved by utilizing an inverse approach that exploits global optimization. An objective function is constructed to express the error between the experimental and analytical values of the selected state variables. Minimization of this objective function yields an efficient determination of the unknown free coefficients. Comparisons between the determined approximations and the experimental data along with computational efficiency improvements conclude this paper.

Keywords

Biharmonic Equation Airy Stress Function Single Physic Finite Element Method Solution Future Generation Computer System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kim, K.J., Shahinpoor, M.: Ionic Polymer-Metal Composites II. Manufacturing Techniques, Smart Materials and Structures (SMS). Institute of Physics Publication 12(1), 65–79 (2003)Google Scholar
  2. 2.
    Kim, K.J., Shahinpoor, M.: Ionic Polymer-Metal Composites III. Modeling and Simulation As Biomimetic Sensors, Actuators, Transducers and Artificial Muscles. Smart Materials and Structures Int. J. 13(4), 1362–1388 (2004)Google Scholar
  3. 3.
    Shahinpoor, M., Kim, K.J.: Ionic Polymer-Metal Composites IV. Industrial and Medical Applications. Smart Materials and Structures Int. J., Smart Mater. Struct. 14(1), 197–214 (2005)CrossRefGoogle Scholar
  4. 4.
    Michopoulos, J.G., Shahinpoor, M.: Towards a Multiphysics Formulation of Electroactive Large Deflection Plates Made from Ionic Polymeric Artificial Muscles, Proceedings of First World Congress on Biomimetics and Artificial Muscles, Albuquerque NM, pp. 9-11 (December 2002)Google Scholar
  5. 5.
    Michopoulos, J.G.: Generalized multifield Von-Karman equations for large deflection of artificial muscle plates. In: Lagoudas, D.C. (ed.) Proc. SPIE, Smart Structures and Materials 2004: Active Materials: Behavior and Mechanics, vol. 5387, pp. 12–23 (2004)Google Scholar
  6. 6.
    Michopoulos, J.: Computational modelling of multi-field ionic continuum systems. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3039, pp. 621–628. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Green, A.E., Naghdi, P.M.: A unified procedure for construction of theories of deformable media. I. Classical continuum physics. Proc. Roy. Soc. London Ser. A (448/1934), 335–356 (1995)Google Scholar
  8. 8.
    Eringen, A.C., Maugin, G.A.: Electrodynamics of Continua I. Foundations and Solid Media. Springer, New York (1990)Google Scholar
  9. 9.
    Sih, G.C., Michopoulos, J.G., Chou, S.C.: Hygrothermoelasticity, Martinus Nijhoff Publishers (now Kluwer Academic) (1986)Google Scholar
  10. 10.
    Michopoulos, J.G., Farhat, C., Fish, J.: Modeling and Simulation of Multiphysics Systems. Journal of Computing and Information Science in Engineering 5(3), 198–213 (2005)CrossRefGoogle Scholar
  11. 11.
    PDE Solutions Inc., FlexPDE 5 Reference manual, PDE Solutions Inc. (2005), http://www.pdesolutions.com/
  12. 12.
    COMSOL Inc., COMSOL Multiphysics 3.2 Reference manual, COMSOL Inc. (2006), http://www.comsol.com/products/multiphysics/
  13. 13.
    Danaila, I., Hecht, F., Pironneau, O.: freeFEM++ and freeFEM3D distributions at (2005), http://www.freefem.org/
  14. 14.
    Michopoulos, J., Tsompanopoulou, P., Houstis, E., Rice, J., Farhat, C., Lesoinne, M., Lechenault, F.: DDEMA: A Data Driven Environment for Multiphysics Applications. In: Sloot, P.M.A., et al. (eds.) ICCS 2003. LNCS, vol. 2660, pp. 309–318. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Michopoulos, J., Tsompanopoulou, P., Houstis, E., Farhat, C., Lesoinne, M., Rice, J., Joshi, A.: On a Data Driven Environment for Multiphysics Applications. Future Generation Computer Systems 21(6), 953–968 (2005)CrossRefGoogle Scholar
  16. 16.
    Timoshenko, S.P., Woinowsky-Krieger, S.: “Theory Of Plates And Shells,” Engineering Societies Monographs. McGraw-Hill, New York (1959)Google Scholar
  17. 17.
    Wolfram, S.: The Mathematica Book, 4th edn. Wolfram Media, Cambridge University Press, Cambridge (1999)Google Scholar
  18. 18.
    Loehle Enterprises, Global Optimization 5.0 for Mathematica, Loehle Enterprises (2004)Google Scholar
  19. 19.
    vonKarman, T, Festifkeitsprobleme im Maschinebau, Encyk. der Math. Wiss., pp. 349 (1910)Google Scholar
  20. 20.
    Levy, S.: Bending of Rectangular Plates with Large Deflections, NACA Technical Report No. 737 (1942)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • John G. Michopoulos
    • 1
  • Moshen Shahinpoor
    • 2
  1. 1.Special Projects Group, Code 6390.2, Center for Computational Material ScienceNaval Research LaboratoryUSA
  2. 2.Artificial Muscle Research Institute School of Engineering and School of Medicine University of New MexicoAlbuquerqueUSA

Personalised recommendations