Joint Structured/Unstructured Parallelism Exploitation in muskel

  • M. Danelutto
  • P. Dazzi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3992)


Structured parallel programming promises to raise the level of abstraction perceived by programmers when implementing parallel applications. In the meanwhile, however, it restricts the freedom of programmers to implement arbitrary parallelism exploitation patterns. In this work we discuss a data flow implementation methodology for skeleton based structured parallel programming environments that easily integrates arbitrary, user-defined parallelism exploitation patterns while preserving most of the benefits typical of structured parallel programming models.


Parallel Programming Parallel Application Performance Contract Task Item Parallel Programming Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aldinucci, M., Danelutto, M.: Stream parallel skeleton optimisations. In: Proc. of the IASTED International Conference Parallel and Distributed Computing and Systems, pp. 955–962. IASTED/ACTA Press, Boston (1999)Google Scholar
  2. 2.
    Aldinucci, M., Danelutto, M., Teti, P.: An advanced environment supporting structured parallel programming in Java. FGCS 19(5), 611–626 (2003)CrossRefGoogle Scholar
  3. 3.
    Bacci, B., Danelutto, M., Pelagatti, S., Vanneschi, M.: SkIE: a heterogeneous environment for HPC applications. Parallel Computing 25, 1827–1852 (1999)CrossRefGoogle Scholar
  4. 4.
    Benoit, A., Cole, M., Hillston, J., Gilmore, S.: Flexible Skeletal Programming with eSkel. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 761–770. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Bromling, S.: Generalising Pattern-based Parallel Programming Systems. In: Proceedings of Parco 2001. Imperial College Press (2002)Google Scholar
  6. 6.
    Cole, M.: Bringing Skeletons out of the Closet: A Pragmatic Manifesto for Skeletal Parallel Programming. Parallel Computing 30(3), 389–406 (2004)CrossRefGoogle Scholar
  7. 7.
    Cole, M., Benoit, A.: The Edinburgh Skeleton Library home page (2005),
  8. 8.
    Danelutto, M.: Dynamic Run Time Support for Skeletons. In: Proc. of the International Conference ParCo 1999, Parallel Computing Fundamentals & Applications, pp. 460–467. Imperial College Press (1999)Google Scholar
  9. 9.
    Danelutto, M.: QoS in parallel programming through application managers. In: Proceedings of the 13th Euromicro Conference on Parallel, Distributed and Network-based processing, Lugano (CH). IEEE, Los Alamitos (2005)Google Scholar
  10. 10.
    Kuchen, H.: A skeleton library. In: Monien, B., Feldmann, R.L. (eds.) Euro-Par 2002. LNCS, vol. 2400, pp. 620–629. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    McDonald, S., Szafron, D., Schaeffer, J., Bromling, S.: Generating Parallel Program Frameworks from Parallel Design Patterns. In: Bode, A., Ludwig, T., Karl, W.C., Wismüller, R. (eds.) Euro-Par 2000. LNCS, vol. 1900, pp. 95–105. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Serot, J., Ginhac, D.: Skeletons for parallel image processing: an overview of the SKIPPER project. Parallel computing 28(12), 1685–1708 (2002)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • M. Danelutto
    • 1
    • 4
  • P. Dazzi
    • 2
    • 3
    • 4
  1. 1.Dept. Computer ScienceUniversity of PisaItaly
  2. 2.ISTI/CNRPisaItaly
  3. 3.IMT – Institute for Advanced StudiesLuccaItaly
  4. 4.CoreGRID Institute on Programming model

Personalised recommendations