Combining Measurement and Stochastic Modelling to Enhance Scheduling Decisions for a Parallel Mean Value Analysis Algorithm

  • Gagarine Yaikhom
  • Murray Cole
  • Stephen Gilmore
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3992)


In this paper we apply the high-level modelling language PEPA to the performance analysis of a parallel program with a pipeline skeleton which computes the Mean Value Analysis (MVA) algorithm for queueing networks.


Queue Length Resource Performance Average Queue Length Algorithmic Skeleton Beowulf Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Benoit, A., Cole, M., Gilmore, S., Hillston, J.: Evaluating the performance of skeleton-based high level parallel programs. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3038, pp. 289–296. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Benoit, A., Cole, M., Gilmore, S., Hillston, J.: Scheduling skeleton-based grid applications using PEPA and NWS. The Computer Journal 48(3), 369–378 (2005)CrossRefGoogle Scholar
  3. 3.
    Hillston, J.: A Compositional Approach to Performance Modelling. CUP (1996)Google Scholar
  4. 4.
    Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computation. MIT Press & Pitman (1989)Google Scholar
  5. 5.
    Wolski, R., Spring, N., Hayes, J.: The Network Weather Service: a distributed resource performance forecasting service for metacomputing. Future Generation Computer Systems 15, 757–768 (1999)CrossRefGoogle Scholar
  6. 6.
    Gilmore, S., Hillston, J.: The PEPA Workbench: A Tool to Support a Process Algebra-based Approach to Performance Modelling. In: Haring, G., Kotsis, G. (eds.) TOOLS 1994. LNCS, vol. 794, pp. 353–368. Springer, Heidelberg (1994)Google Scholar
  7. 7.
    Gennaro, C., King, P.: Parallelising the Mean Value Analysis Algorithm. Transactions of The Society for Computer Systems International 16, 16–22 (1999)Google Scholar
  8. 8.
    Baskett, F., Chandy, K., Muntz, R., Palacios, F.: Open, Closed, and Mixed Networks of Queues with Different Classes of Customers. JACM 22, 248–260 (1975)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Reiser, M., Lavenberg, S.: Mean Value Analysis of Closed Multichain Queueing Networks. JACM 27, 313–322 (1980)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Gunther, N.J.: Analyzing Computer System Performance with Perl:PDQ. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Scaife, N., Horiguchi, S., Michaelson, G., Bristow, P.: A parallel SML compiler based on algorithmic skeletons. Journal of Functional Programming 15, 615–650 (2005)MATHCrossRefGoogle Scholar
  12. 12.
    Morajko, A., Cesar, E., Caymes-Scutari, P., Margalef, T., Sorribes, J., Luque, E.: Automatic Tuning of Master Worker Applications. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 95–103. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Cosmo, R.D., Li, Z., Pelagatti, S., Weis, P.: Skeletal parallel programming with ocamlp3l 2.0. To appear in Parallel Processing Letters (2006)Google Scholar
  14. 14.
    Gonzalez-Velez, H.: An Adaptive Skeletal Task Farm for Grids. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 401–410. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Gagarine Yaikhom
    • 1
  • Murray Cole
    • 1
  • Stephen Gilmore
    • 1
  1. 1.School of InformaticsThe University of EdinburghEdinburghUK

Personalised recommendations