Phase Transitions in Gene Knockdown Networks of Transitive RNAi

  • Shibin Qiu
  • Terran Lane
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3992)


Since gene silencing by RNA interference (RNAi) has been observed when inexact matches exist in siRNA-mRNA binding, the number of mismatched nucleotides allowed by nature becomes an important quantity in characterizing RNAi specificity. We use scale-free graphs to model the knockdown interactions among different genes and estimate the allowable flexibility by examining transitive RNAi, which amplifies siRNA and cyclically silences targets. Simulation results in S. pombe indicate that continually increasing the number of mismatches risks transcriptome-wide knockdown and eventually turns RNAi from defensive to self-destructive. At the phase transition, the number of mismatches indicates a critical value beyond which tRNAi would cause an organism instable. This critical value suggests an upper limit of no more than 6 nt mismatches in the binding.


Phase Transition Degree Distribution Giant Component Secondary Target String Kernel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Elbashir, S.M., Martinez, J., Patkaniowska, A., Lendeckel, W., Tuschl, T.: Functional atonamy of siRNA for mediating efficient RNAi in Drosophila melanogaster embryo lysate. The EMBO Journal 20, 6877–6888 (2001)CrossRefGoogle Scholar
  2. 2.
    Saxena, S., Jonsson, Z.O., Dutta, A.: Small RNAs with imperfect match to endogenous mRNA repress translation. Journal of Biological Chemistry 278, 44312–44319 (2003)CrossRefGoogle Scholar
  3. 3.
    Jackson, A., Bartz, S., Schelter, J., Kobayashi, S., Burchard, J., Mao, M., Li, B., Cavet, G., Linsley, P.S.: Expression profiling reveals off-target gene regulation by RNAi. Nature Biotechnology 21, 635–637 (2003)CrossRefGoogle Scholar
  4. 4.
    Qiu, S., Adema, C.M., Lane, T.: A computational study of off-target effects of RNA interference. Nucleic Acids Research 33, 1834–1847 (2005)CrossRefGoogle Scholar
  5. 5.
    Sijen, T., Fleenor, J., Simmer, F., Thijssen, K., Parrish, S., Timmons, L., Plasterk, R., Fire, A.: On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107, 465–476 (2001)CrossRefGoogle Scholar
  6. 6.
    Lipardi, C., Wei, Q., Paterson, B.: RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNA that are degraded to generate new siRNA. Cell 107, 297–307 (2001)CrossRefGoogle Scholar
  7. 7.
    Dalmay, T., Hamilton, A., Rudd, S., Angell, S., Baulcombe, D.: An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101, 543–553 (2000)CrossRefGoogle Scholar
  8. 8.
    Ui-Tei, K., Naito, Y., Takahashi, F., Haraguchi, T., Ohki-Hamazaki, H., et al.: Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Research 32, 936–948 (2004)CrossRefGoogle Scholar
  9. 9.
    Dillin, A.: The specifics of small interfering RNA specificity. Proc. Natl. Acad. Sci. USA 100, 6289–6291 (2003)CrossRefGoogle Scholar
  10. 10.
    Qiu, S., Lane, T.: String kernels of imperfect matches for off-target detection in RNA interferance. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2005. LNCS, vol. 3515, pp. 894–902. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Allshire, R.: RNAi and heterochromatin–a hushed-up affair. Science 297, 1818–1819 (2002)CrossRefGoogle Scholar
  12. 12.
    Vaistij, F., Jones, L., Baulcombe, D.: Spreading of RNA targeting and DNA methylation in RNA silencing requires transcription of the target gene and a putative RNA-dependent RNA polymerase. The Plant Cell 14, 857–867 (2002)CrossRefGoogle Scholar
  13. 13.
    Metzlaff, M., O’Dell, M., Cluster, P., Flavell, R.: RNA-mediated RNA degradation and chalcone synthase A silencing in Petunia. Cell 88, 845–854 (1997)CrossRefGoogle Scholar
  14. 14.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Shibin Qiu
    • 1
  • Terran Lane
    • 1
  1. 1.Dept. of Computer ScienceUniversity of New MexicoAlbuquerque

Personalised recommendations