Advertisement

Mesoscopic Simulations of Unsteady Shear-Thinning Flows

  • Abdel Monim Artoli
  • Adélia Sequeira
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3992)

Abstract

The capability of the lattice Boltzmann method as an accurate mesoscopic solver for unsteady non-Newtonian flows is shown by investigating pulsatile shear-thinning blood flow in a three-dimensional idealised vessel. The non-Newtonian behaviour of blood flow is modelled by the Carreau-Yasuda viscosity model. Higher velocity and shear stress magnitudes, relative to Newtonian cases, are observed for the shear-thinning simulations in response to changes in the shear-rate dependent Womersley parameter. We also investigate the flexibility of the method through the shear-thinning behaviour of the lattice Boltzmann relaxation parameter at different Deborah numbers.

References

  1. 1.
    The World Health Report 2005, WHO publications (2005)Google Scholar
  2. 2.
    Wooton, D.M., Ku, D.N.: Fluid mechanics of vascular systems, diseases, and thrombosis. Annual Review of Biomedical Engineering 1, 299–329 (1999)CrossRefGoogle Scholar
  3. 3.
    Gijsen, F.J.H., de Vosse, F.N., Janssen, F.N.: The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model. Journal of Biomechanics 32, 601–608 (1999)CrossRefGoogle Scholar
  4. 4.
    Arada, N., Pires, M., Sequeira, A.: Numerical simulations of shear-thinning Oldroyd-B fluids in curved pipes. IASME Transactions 6(2), 948–959 (2005)MathSciNetGoogle Scholar
  5. 5.
    Artoli, A.M., Hoekstra, A.G., Sloot, P.M.A.: Simulation of a Systolic Cycle in a Realistic Artery with the Lattice Boltzmann BGK Method. International Journal of Modern Physics B 17, 95–98 (2003)CrossRefGoogle Scholar
  6. 6.
    Ouared, R., Chopard, B.: Lattice Boltzmann Simulations of Blood Flow: Non-Newtonian Rheology and Clotting Processes. Journal of Statistical Physics 121(1-2), 209–221 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Aharonov, E., Rothman, D.H.: Non-newtonian flow (through porous media): a lattice boltzmann method. Geophys. Research Letters 20, 679–682 (1993)CrossRefGoogle Scholar
  8. 8.
    Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press, Oxford (2001)zbMATHGoogle Scholar
  9. 9.
    Benzi, R., Succi, S., Vergassola, M.: The Lattice Boltzmann Equation - Theory and Applications. Physics Reports 222, 145–197 (1992)CrossRefGoogle Scholar
  10. 10.
    Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cambridge University Press, Cambridge (1998)zbMATHCrossRefGoogle Scholar
  11. 11.
    Giraud, L., d’Humires, D., Lallemand, P.: A lattice Boltzmann model for visco-elasticity. International Journal of Modern Physics C 8, 805–815 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Abdel Monim Artoli
    • 1
  • Adélia Sequeira
    • 1
  1. 1.Departamento de Matemática , Instituto Superior TécnicoCentre for Mathematics and its Applications (CEMAT)LISBOAPortugal

Personalised recommendations