Mesoscopic Simulations of Unsteady Shear-Thinning Flows

  • Abdel Monim Artoli
  • Adélia Sequeira
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3992)


The capability of the lattice Boltzmann method as an accurate mesoscopic solver for unsteady non-Newtonian flows is shown by investigating pulsatile shear-thinning blood flow in a three-dimensional idealised vessel. The non-Newtonian behaviour of blood flow is modelled by the Carreau-Yasuda viscosity model. Higher velocity and shear stress magnitudes, relative to Newtonian cases, are observed for the shear-thinning simulations in response to changes in the shear-rate dependent Womersley parameter. We also investigate the flexibility of the method through the shear-thinning behaviour of the lattice Boltzmann relaxation parameter at different Deborah numbers.


  1. 1.
    The World Health Report 2005, WHO publications (2005)Google Scholar
  2. 2.
    Wooton, D.M., Ku, D.N.: Fluid mechanics of vascular systems, diseases, and thrombosis. Annual Review of Biomedical Engineering 1, 299–329 (1999)CrossRefGoogle Scholar
  3. 3.
    Gijsen, F.J.H., de Vosse, F.N., Janssen, F.N.: The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model. Journal of Biomechanics 32, 601–608 (1999)CrossRefGoogle Scholar
  4. 4.
    Arada, N., Pires, M., Sequeira, A.: Numerical simulations of shear-thinning Oldroyd-B fluids in curved pipes. IASME Transactions 6(2), 948–959 (2005)MathSciNetGoogle Scholar
  5. 5.
    Artoli, A.M., Hoekstra, A.G., Sloot, P.M.A.: Simulation of a Systolic Cycle in a Realistic Artery with the Lattice Boltzmann BGK Method. International Journal of Modern Physics B 17, 95–98 (2003)CrossRefGoogle Scholar
  6. 6.
    Ouared, R., Chopard, B.: Lattice Boltzmann Simulations of Blood Flow: Non-Newtonian Rheology and Clotting Processes. Journal of Statistical Physics 121(1-2), 209–221 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Aharonov, E., Rothman, D.H.: Non-newtonian flow (through porous media): a lattice boltzmann method. Geophys. Research Letters 20, 679–682 (1993)CrossRefGoogle Scholar
  8. 8.
    Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press, Oxford (2001)zbMATHGoogle Scholar
  9. 9.
    Benzi, R., Succi, S., Vergassola, M.: The Lattice Boltzmann Equation - Theory and Applications. Physics Reports 222, 145–197 (1992)CrossRefGoogle Scholar
  10. 10.
    Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cambridge University Press, Cambridge (1998)zbMATHCrossRefGoogle Scholar
  11. 11.
    Giraud, L., d’Humires, D., Lallemand, P.: A lattice Boltzmann model for visco-elasticity. International Journal of Modern Physics C 8, 805–815 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Abdel Monim Artoli
    • 1
  • Adélia Sequeira
    • 1
  1. 1.Departamento de Matemática , Instituto Superior TécnicoCentre for Mathematics and its Applications (CEMAT)LISBOAPortugal

Personalised recommendations