Rearrangement of Noisy Genomes

  • Chunfang Zheng
  • David Sankoff
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3992)


Measures of distance between genomic maps are inflated by high levels of noise due to incorrectly resolved paralogy and error at the mapping, sequencing and alignment levels. Comparison is also hampered by lack of information on gene orientation and lack gene order. We suggest a suite of algorithms for genome rearrangement analysis in the presence of noise and incomplete information, and test its robustness as noise levels increase.


Polynomial Time Breakpoint Graph Alignment Level Compatibility Graph Strip Analysis 


  1. 1.
    Arora, S., Karger, D., Karpinski, M.: Polynomial time approximation schemes for dense instances of NP-hard problems. JCCS 58, 193–210 (1999)MathSciNetMATHGoogle Scholar
  2. 2.
    Caprara, A.: Sorting by reversals is difficult. In: RECOMB 1997, pp. 75–83 (1997)Google Scholar
  3. 3.
    Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip (polynomial algorithm for sorting signed permutations by reversals). STOC 27, 178–189 (1995)Google Scholar
  4. 4.
    Hannenhalli, S., Pevzner, P.A.: To cut or not to cut (applications of comparative physical maps in molecular evolution). SODA 7, 304–313 (1996)MathSciNetGoogle Scholar
  5. 5.
    Kececioglu, J., Sankoff, D.: Exact and approximation algorithms for the inversion distance between two permutations. In: Apostolico, A., Crochemore, M., Galil, Z., Manber, U. (eds.) CPM 1993. LNCS, vol. 684, pp. 87–105. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  6. 6.
    Kumlander, D.: A new exact algorithm for the maximum-weight clique problem based on a heuristic vertex-coloring and a backtrack search. Fourth European Congress of Mathematics. Poster and manuscript (2005)Google Scholar
  7. 7.
    Sankoff, D., Lenert, A., Zheng, C.: Reversals of fortune. In: McLysaght, A., Huson, D.H. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3678, pp. 131–141. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Tesler, G.: Efficient algorithms for multichromosomal genome rearrangements. JCSS 65, 587–609 (2002)MathSciNetMATHGoogle Scholar
  9. 9.
    Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21, 3340–3346 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Chunfang Zheng
    • 1
  • David Sankoff
    • 2
  1. 1.Department of BiologyUniversity of OttawaCanada
  2. 2.Department of Mathematics and StatisticsUniversity of OttawaCanada

Personalised recommendations