Numerical Modeling of Plasma – Flow Interaction

  • Jean-Charles Matéo-Vélez
  • Francois Rogier
  • Frédéric Thivet
  • Pierre Degond
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3992)


In the frame of the internal project PUMA (Plasma Used to Master Aerodynamics), ONERA is conducting fundamental studies of plasma-flow interactions. In this paper, the ionic wind created by corona discharges is studied in the case of a subsonic flow over a flat plate. The proposed mechanism of the ionic wind proposed is the addition of momentum by collisions between charged and neutral particles. In order to evaluate the effect of plasma on aerodynamics, a kinetic modeling of the discharge is coupled with a Fluid Dynamics code.


Corona Discharge Dielectric Barrier Discharge Barrier Discharge Plasma Actuator Ionic Wind 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Robinson, M.: Movement of air in the electric wind of the corona discharge. In: AIEE transactions, New York, USA (1961)Google Scholar
  2. 2.
    Shcherbakov, Y.V., coll.: Drag reduction by AC streamer corona discharges along a wing-like profile plate. In: 31st AIAA Plasmadynamics and Lasers Conference, Denver, USA, pp. 2000–2670. AIAA (2000)Google Scholar
  3. 3.
    Roth, J.R., Sin, H., Madhan, R., Wilkinson, S.: Flow re-attachment and acceleration by paraelectric and peristaltic electrohydrodynamic effects. In: 41st Aerospace Sciences Meeting and Exhibit, Reno, USA, AIAA, 2003–2531 (2003)Google Scholar
  4. 4.
    Pons, J., Moreau, E., Touchard, G.: Surface DC corona discharges and AC barrier discharges in ambient air at atmospheric pressure: measurements of the induced ionic wind velocity. In: 15th International Conference on Gas Discharges and their Applications, Toulouse, France (2004)Google Scholar
  5. 5.
    Post, M.L., Corke, T.C.: Plasma actuators for separation control on airfoils. In: 11th International Symposium on Flow Visualization, Notre-Dame, USA (2004)Google Scholar
  6. 6.
    Zavialov, I.N., Roupassov, D.V., Starikovskii, A., Yu., Saddoughi, S.G.: Boundary layer control by gas discharge plasma. In: European Conference for Aerospace Sciences (EUCASS), Moscow, Russia (2005)Google Scholar
  7. 7.
    Boeuf, J.P., Pitchford, L.C.: Electrohydrodynamic force and aerodynamic flow acceleration in surface barrier discharge. J. Appl. Phys. 97, 103307 (2005)Google Scholar
  8. 8.
    Mateo-Velez, J.C., Thivet, F., Rogier, F., Degond, P., Quinio, G.: Numerical modeling of corona discharges and their interaction with aerodynamics. In: European Conference for Aerospace Sciences (EUCASS), Moscow, Russia (2005)Google Scholar
  9. 9.
    Morrow, R.: The theory of positive glow corona. J. Phys. D: Appl. Phys. 30, 3099–3114 (1997)CrossRefGoogle Scholar
  10. 10.
    Bolsig, CPAT & Kinema Software,
  11. 11.
    Li, S.Z., Uhm, H.S.: Investigation of electrical breakdown characteristics in the electrodes of cylindrical geometry. Phys. Plasmas 11, 3088–3095 (2004)CrossRefGoogle Scholar
  12. 12.
    Chevalier, P., Courbet, B., Dutoya, D., Klotz, P., Ruiz, E., Troyes, J., Villedieu, P.: CEDRE, Development and Validation of a Multiphysic Computational Software. In: European Conference for Aerospace Sciences (EUCASS), Moscow, Russia (2005)Google Scholar
  13. 13.
    Quinio, G.: Modélisation numérique de la génération d’un plasma d’air dans un écoulement. PhD thesis, INSA Toulouse, France (December (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jean-Charles Matéo-Vélez
    • 1
  • Francois Rogier
    • 1
  • Frédéric Thivet
    • 1
  • Pierre Degond
    • 2
  1. 1.Département Modèles pour l’Aérodynamique et l’ÉnergétiqueONERAToulouseFrance
  2. 2.UMR 5640, Laboratoire Mathématiques pour l’Industrie et la PhysiqueToulouseFrance

Personalised recommendations