Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
Book cover

International Conference on Computational Science

ICCS 2006: Computational Science – ICCS 2006 pp 704–711Cite as

  1. Home
  2. Computational Science – ICCS 2006
  3. Conference paper
Constrained Optimization of the Stress Function for Multidimensional Scaling

Constrained Optimization of the Stress Function for Multidimensional Scaling

  • Vydunas Saltenis20 
  • Conference paper
  • 1045 Accesses

  • 1 Citations

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 3991)

Abstract

Multidimensional Scaling (MDS) requires the multimodal Stress function optimization to estimate the model parameters, i.e. the coordinates of points in a lower-dimensional space. Therefore, finding the global optimum of the Stress function is very important for applications of MDS. The main idea of this paper is replacing the difficult multimodal problem by a simpler unimodal constrained optimization problem. A coplanarity measure of points is used as a constraint while the Stress function is minimized in the original high-dimensional space. Two coplanarity measures are proposed. A simple example presented illustrates and visualizes the optimization procedure. Experimental evaluation results with various data point sets demonstrate the potential ability to simplify MDS algorithms avoiding multidimodality.

Keywords

  • Local Optimization
  • Multidimensional Scaling
  • Conjugate Gradient Method
  • Stress Function
  • Optimal Stress

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Download conference paper PDF

References

  • Borg, L., Groenen, P.: Modern Multidimensional Scaling: Theory and Applications. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  • Cox, T., Cox, M.: Multidimensional Scaling. Chapman and Hall, Boca Raton (2001)

    MATH  Google Scholar 

  • Kruskal, J.: Nonmetric Multidimensional Scaling: A Numerical Method. Psychometrica 29, 115–129 (1964)

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Trosset, M., Mathar, R.: On existence of nonglobal minimizers of the STRESS Criterion for Metric Multidimensional Scaling. In: Proceedings of the Statistical Computing Section, American Statistical Association, Alexandria, VA, pp. 158–162 (1997)

    Google Scholar 

  • Zilinskas, A., Podlipskyte, A.: On multimodality of the SSTRESS criterion for metric multidimensional scaling. Informatica 14(1), 121–130 (2003)

    MATH  Google Scholar 

  • Sommerville, D.M.Y.: An Introduction to the Geometry of n Dimensions. Dover, New York (1958)

    MATH  Google Scholar 

  • Abbott, P.(ed.): In and Out: Coplanarity. Mathematica J 9, 300–302 (2004)

    Google Scholar 

  • Weisstein, E.W.: Coplanar. MathWorld - A Wolfram Web Resource, http://mathworld.wolfram.com/Coplanar.html

  • Weisstein, E.W.: Point-Plane Distance. MathWorld - A Wolfram Web Resource, http://mathworld.wolfram.com/Point-PlaneDistance.html

  • Bertsekas, D.P.: Nonlinear programming. Athena Scientific (1999)

    Google Scholar 

  • Torgerson, W.S.: Theory and methods of scaling. Wiley, New York (1958)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute of Mathematics and Informatics, Akademijos 4, LT-08663, Vilnius, Lithuania

    Vydunas Saltenis

Authors
  1. Vydunas Saltenis
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Advanced Computing and Emerging Technologies Centre, The School of Systems Engineering, University of Reading, RG6 6AY, Reading, United Kingdom

    Vassil N. Alexandrov

  2. Department of Mathematics and Computer Science, University of Amsterdam, Kruislaan 403, 1098, Amsterdam, SJ, The Netherlands

    Geert Dick van Albada

  3. Faculty of Sciences, Section of Computational Science, University of Amsterdam, Kruislaan 403, 1098, Amsterdam, SJ, The Netherlands

    Peter M. A. Sloot

  4. Computer Science Department, University of Tennessee, 37996-3450, Knoxville, TN, USA

    Jack Dongarra

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Saltenis, V. (2006). Constrained Optimization of the Stress Function for Multidimensional Scaling. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds) Computational Science – ICCS 2006. ICCS 2006. Lecture Notes in Computer Science, vol 3991. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11758501_94

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/11758501_94

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34379-0

  • Online ISBN: 978-3-540-34380-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

167.114.118.210

Not affiliated

Springer Nature

© 2023 Springer Nature