A Generic Framework for Local Search: Application to the Sudoku Problem

  • T. Lambert
  • E. Monfroy
  • F. Saubion
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3991)


Constraint Satisfaction Problems (CSP) provide a general framework for modeling many practical applications. CSPs can be solved with complete methods or incomplete methods. Although some frameworks has been designed to formalized constraint propagation, there are only few studies of theoretical frameworks for local search. In this paper, we are concerned with the design of a generic framework to model local search as the computation of a fixed point of functions and to solve the Sudoku problem. This work allows one to simulate standard strategies used for local search, and to design easily new strategies in a uniform framework.


Local Search Tabu Search Constraint Satisfaction Problem Constraint Propagation Local Search Algorithm 


  1. 1.
    Aarts, E., Lenstra, J.K. (eds.): Local Search in Combinatorial Optimization. John Wiley and Sons, Chichester (1997)MATHGoogle Scholar
  2. 2.
    Apt, K.: From chaotic iteration to constraint propagation. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 36–55. Springer, Heidelberg (1997)Google Scholar
  3. 3.
    Focacci, F., Laburthe, F., Lodi, A.: Local search and constraint programming. In: Handbook of Metaheuristics. Kluwer, Dordrecht (2002)Google Scholar
  4. 4.
    Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Dordrecht (1997)MATHGoogle Scholar
  5. 5.
    Hao, J.K., Dorne, R.: Empirical studies of heuristics local search for constraint solving. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118, pp. 184–208. Springer, Heidelberg (1996)Google Scholar
  6. 6.
    Jussien, N., Lhomme, O.: Local search with constraint propagation and conflict-based heuristics. Artificial Intelligence 139(1), 21–45 (2002)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Monfroy, E., Saubion, F., Lambert, T.: On hybridization of local search and constraint propagation. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 180–194. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Régin, J.C.: A filtering algorithm for constraint of difference in csps. In: National Conference of Artificial Intelligence, pp. 362–367 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • T. Lambert
    • 1
    • 2
  • E. Monfroy
    • 1
    • 3
  • F. Saubion
    • 2
  1. 1.LINAUniversité de NantesFrance
  2. 2.LERIAUniversité d’AngersFrance
  3. 3.Universidad Santa MaríaValparaísoChile

Personalised recommendations