Effects of O3 Adsorption on the Emission Properties of Single-Wall Carbon Nanotubes: A Density Functional Theory Study

  • B. Akdim
  • T. Kar
  • D. A. Shiffler
  • X. Duan
  • R. Pachter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3991)


In this study, we report density functional theory calculations to examine the effects of O3 adsorption on the field emission properties of capped C(5,5) single-wall carbon nanotubes. Structural changes, adsorption energies, and the first ionization potential for possible adsorption sites are discussed, including an applied field in the calculations. The results suggest a suppression of the emission upon O3 adsorption, explained by the charge transfer, while the favored adsorption for the etched structures rationalizes enhancement due to sharper tips upon opening of the carbon nanotube when ozonized, consistent with experimental observations.


Density Functional Theory Adsorption Site Density Functional Theory Study Favored Adsorption Field Emission Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Banerjee, S., Hemraj-Benny, T., Wong, S.S.: Adv. Mater. 17, 17 (2005)Google Scholar
  2. 2.
    Cheng, Y., Zhou, O.C.R.: Physique 4, 1021 (2003)Google Scholar
  3. 3.
    Minoux, E., Groening, O., Teo, K.B.K., Dalal, S.H., Gangloff, L., Schnell, J.-P., Hudanski, L., Bu, I.Y.Y., Vincent, P., Legagneux, P., Amaratunga, G.A.J., Milne, W.I.: Nano Lett. 5, 2135 (2005)Google Scholar
  4. 4.
    Buldum, A., Lu, J.P.: Phys. Rev. Lett. 91, 236801 (2003)Google Scholar
  5. 5.
    Duan, X., Akdim, B., Pachter, R.: Appl. Surf. Sci. 243, 11 (2005)Google Scholar
  6. 6.
    Akdim, B., Duan, X., Pachter, R.: Phys. Rev. B   72, 121402 (2005)Google Scholar
  7. 7.
    Jiang, J., Zhang, J., Feng, T., Jiang, T., Wang, Y., Zhang, F., Dai, L., Wang, X., Liu, X., Zou, S.: Solid State Comm. 135, 390 (2005)Google Scholar
  8. 8.
    Lim, S.C., Choi, Y.C., Jeong, H.J., Shin, Y.M., An, K.H., Bae, D.J., Lee, Y.H., Lee, N.S., Kim, J.M.: Adv. Mater. 13, 1563 (2001)Google Scholar
  9. 9.
    Akdim, B., Duan, X., Pachter, R.: Nano Lett. 3, 1209 (2003)Google Scholar
  10. 10.
    Kung, S.–C., Hwang, K.C., Lin, N.: App. Phys. Lett. 80, 4819 (2002)Google Scholar
  11. 11.
    Delley, B.: implemented in DMOL3. Accelrys, Inc.Google Scholar
  12. 12.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)Google Scholar
  13. 13.
    Frisch, M.J., et al.: Gaussian 03, Revision B.05. Gaussian, Inc., Pittsburgh (2003)Google Scholar
  14. 14.
  15. 15.
    Scuseria, G.E.J.: Phys. Chem. A. 103, 4782 (1999)Google Scholar
  16. 16.
    Beck, T.L.: Rev. Modern Phys. 72, 1041 (2000)Google Scholar
  17. 17.
    Nordelli, M.B., Fattebert, J.-L., Bernholc, J.: Phys. Rev. B. 64, 245463 (2001)Google Scholar
  18. 18.
    Akdim, B., Duan, X., Pachter, R.: work in progressGoogle Scholar
  19. 19.
    Murray, R.W.: Acc. Chem. Res. 1, 313 (1968)Google Scholar
  20. 20.
    Kar, T., Akdim, B., Duan, X., Pachter, R.: manuscript in preparationGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • B. Akdim
    • 1
  • T. Kar
    • 2
  • D. A. Shiffler
    • 3
  • X. Duan
    • 1
  • R. Pachter
    • 1
  1. 1.Air Force Research Laboratory, Materials and Manufacturing DirectorateWright-Patterson Air Force BaseUSA
  2. 2.Department of Chemistry and BiochemistryUtah State UniversityLoganUSA
  3. 3.Air Force Research Laboratory, Directed Energy DirectorateKirtland Air Force BaseUSA

Personalised recommendations