BRUST: An Efficient Buffer Replacement for Spatial Databases

  • Jun-Ki Min
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3991)


This paper presents a novel buffer management technique for spatial database management systems. Much research has been performed on various buffer management techniques in order to reduce disk I/O. However, many of the proposed techniques utilize the temporal locality of access patterns. In spatial database environments, there exists not only the temporal locality, where a recently access object will be accessed again in near future, but also spatial locality, where the objects in the recently accessed regions will be accessed again in the near future. Thus, in this paper, we present a buffer management technique, called BRUST, which utilizes both the temporal locality and spatial locality in spatial database environments.


Spatial Locality Geographic Information System Temporal Locality Access Pattern Spatial Database 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Guting, R.H.: An introduction to spatial database systems. VLDB 3, 357–399 (1994)CrossRefGoogle Scholar
  2. 2.
    Guttman, A.: The R-tree: A Dynamic index structure for spatial searching. In: Proceedings of ACM SIGMOD Conference, pp. 47–57 (1984)Google Scholar
  3. 3.
    Brinkhoff, T., Kriegel, H., Scheneider, R., Seeger, B.: The R*-tree: An Efficient and Robust Access Method for Points and Rectangles. In: Proceedings of ACM SIGMOD Conference, pp. 322–331 (1990)Google Scholar
  4. 4.
    Min, J.K., Park, H.H., Chung, C.W.: Multi-way spatial join selectivity for the ring join graph. Information and Software Technology 47, 785–795 (2005)CrossRefGoogle Scholar
  5. 5.
    Papadias, D., Mamoulis, N., Theodoridis, Y.: Processing and Optimization of Multiway Spatial Join Using R-Tree. In: Proceedings of ACM PODS, pp. 44–55 (1999)Google Scholar
  6. 6.
    Effelsberg, W.: Principles of Database buffer Management. ACM TODS 9, 560–595 (1984)CrossRefGoogle Scholar
  7. 7.
    O’Neil, E.J., Neil, P.E.O., Weikum, G.: The LRU-K Page Replacement algorithm for database disk buffering. In: Proceedings of ACM SIGMOD Conference, pp. 297–306 (1993)Google Scholar
  8. 8.
    Johnson, T., Shasha, D.: 2Q: a Low Overhead High Performance Buffer Management Replacement Algorithm. In: Proceedings of VLDB Conference, pp. 439–450 (1994)Google Scholar
  9. 9.
    Lee, D., Choi, J., Kim, J.-H., Noh, S.H., Min, S.L., Cho, Y., Kim, C.S.: LRFU: A Spectrum of Policies that subsumes the Least Recently Used and Least Frequently Used Policies. IEEE Tans. Computers 50, 1352–1360 (2001)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Megiddo, N., Modha, D.S.: ARC: A Self-tuning, Low Overhead Replacement Cache. In: Proceedings of USENIX FAST Conference (2003)Google Scholar
  11. 11.
    Sokolinsky, L.B.: LFU-K: An Effective Buffer Management Replacement Algorithm. In: Proceedings of DASFAA, pp. 670–681 (2004)Google Scholar
  12. 12.
    Juurlink, B.: Approximating the Optimal Replacement Algorithm. In: ACM CF Conference (2004)Google Scholar
  13. 13.
    Sacco, G.M.: Index Access with a Finite Buffer. In: Proceedings of VLDB Conference (1987)Google Scholar
  14. 14.
    Goh, C.H., Ooi, B.C., Sim, D., Tan, K.: GHOST: Fine Granularity Buffering of Index. In: Proceedings of VLDB Conference (1999)Google Scholar
  15. 15.
    Papadopoulos, A., Manolopoulos, Y.: Global Page Replacement in Spatial Databases. In: Thoma, H., Wagner, R.R. (eds.) DEXA 1996. LNCS, vol. 1134. Springer, Heidelberg (1996)Google Scholar
  16. 16.
    Kamel, I., Faloutsos, C.: On Packing R-Trees. In: Proceedings of CIKM, pp. 490–499 (1993)Google Scholar
  17. 17.
    Brinkhoff, T.: A Robust and Self-tuning Page Replacement Strategy for Spatial Database Systems. In: Hameurlain, A., Cicchetti, R., Traunmüller, R. (eds.) DEXA 2002. LNCS, vol. 2453, pp. 533–552. Springer, Heidelberg (2002)Google Scholar
  18. 18.
    Ki-Joune, L., Robert, L.: The Spatial Locality and a Spatial Indexing Method by Dynamic Clustering in Hypermap System. In: Proceedings of SSD, pp. 207–223 (1990)Google Scholar
  19. 19.
    Bureau, U.C.: UA Census 2000 TIGER/Line Files,

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jun-Ki Min
    • 1
  1. 1.School of Internet-Media EngineeringKorea University of Technology and EducationCheonan, ChungnamRepublic of Korea

Personalised recommendations