Advertisement

Landscape Properties and Hybrid Evolutionary Algorithm for Optimum Multiuser Detection Problem

  • Shaowei Wang
  • Qiuping Zhu
  • Lishan Kang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3991)

Abstract

Optimum multiuser detection (OMD) for CDMA systems is an NP-complete problem. Fitness landscape has been proven to be very useful for understanding the behavior of combinatorial optimization algorithms and can help in predicting their performance. This paper analyzes the statistic properties of the fitness landscape of the OMD problem by performing autocorrelation analysis, fitness distance correlation test and epistasis measure. The analysis results, including epistasis variance, correlation length and fitness distance correlation coefficient in different instances, explain why some random search algorithms are effective methods for the OMD problem and give hints how to design more efficient randomized search heuristic algorithms for it. Based on these results, a multi-start greedy algorithm is proposed for multiuser detection and simulation results show it can provide rather good performance for cases where other suboptimum algorithms perform poorly.

Keywords

Logarithm Likelihood Function Fitness Landscape Multiuser Detection Multiple Access Interference Landscape Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Verdu, S.: Minimum Probability of Error for Asynchronous Gaussian Multiple-access Channels. IEEE Transactions on Information Theory 32, 85–96 (1986)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Verdu, S.: Computational Complexity of Optimal Multiuser Detection. Algorithmica 4, 303–312 (1989)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    AlRustamani, A., Vojcic, B.R.: A New Approach to Greedy Multiuser Detection. IEEE Transactions on Communications 50, 1326–1336 (2002)CrossRefGoogle Scholar
  4. 4.
    Lim, H.S., Rao, M.V.C., Tan, A.W.C., Chuah, H.T.: Mulatiuser Detection for DS-CDMA Systems Using Evolutionary Programming. IEEE Communications Letters 7, 101–103 (2003)CrossRefGoogle Scholar
  5. 5.
    Hu, J., Blum, R.S.: A Gradient Guided Search Algorithm for Multiuser Detection. IEEE Communications Letters 4, 340–342 (2000)CrossRefGoogle Scholar
  6. 6.
    Lim, H.S., Venkatesh, B.: An Efficient Local Search Heuristics for Asynchronous Multiuser Detection. IEEE Communications Letters 7, 299–330 (2003)CrossRefGoogle Scholar
  7. 7.
    Tan, P.H., Rasmussen, L.K.: Multiuser Detection in CDMA-A Comparison of Relaxations, Exact, and Heuristic Search Methods. IEEE Transactions on Wireless Communicatons 3, 1802–1809 (2004)CrossRefGoogle Scholar
  8. 8.
    Weinberger, E.D.: Correlated and Uncorrelated Fitness Landscapes and How to Tell the Difference. Biological Cybernetics 63, 325–336 (1990)MATHCrossRefGoogle Scholar
  9. 9.
    Merz, P., Freisleben, B.: Fitness Landscape Analysis and Memetic Algorithms for the Quadratic Assignment Problem. IEEE Transactions on Evolutionary Computation 4, 337–352 (2000)CrossRefGoogle Scholar
  10. 10.
    Stadler, P.F.: Fitness Landscape. Lecture Notes in Physics, pp. 183–204. Springer, Heidelberg (2002)Google Scholar
  11. 11.
    Reeves, C., Wright, C.: An experimental design perspective on genetic algorithms. In: Whitley, L.D., Vose, M.D. (eds.) Foundations of Genetic Algorithms, vol. 3, pp. 7–22. Morgan Kaufmann, San Mateo (1995)Google Scholar
  12. 12.
    Naudts, B., Kallel, L.: A Comparison of Predictive Measure of Problem Difficulty in Evolutionary Algorithms. IEEE Transactions on Evolutionary Computation 4, 1–15 (2000)CrossRefGoogle Scholar
  13. 13.
    Verdu, S.: Multiuser Detection. Cambridge University Press, Cambridge (1998)MATHGoogle Scholar
  14. 14.
    Divsalar, D., Simon, M.K., Raphaeli, D.: Improved Parallel Interference Cancellation for CDMA. IEEE Transactions on Communications 46, 258–268 (1998)CrossRefGoogle Scholar
  15. 15.
    Merz, P., Freisleben, B.: Greedy and local search heuristics for unconstrained binary quadratic programming. Journal of Heuristics 8, 197–213 (2002)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Shaowei Wang
    • 1
  • Qiuping Zhu
    • 1
  • Lishan Kang
    • 2
  1. 1.School of Electronic InformationWuhan UniversityWuhanP.R. China
  2. 2.State Key Laboratory of Software EngineeringWuhan UniversityWuhanP.R. China

Personalised recommendations