Semi-Lagrangian Scale Selective Two-Time-Level Scheme for Hydrostatic Atmospheric Model

  • Andrei Bourchtein
  • Ludmila Bourchtein
  • Maxim Naumov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3991)


A semi-Lagrangian scale selective finite difference scheme for hydrostatic atmospheric model is developed. The principal characteristics of the scheme are solution of the trajectory equations for advection, explicit first order approximation of physically insignificant adjustment terms and implicit time splitting discretization of the principal physical modes. This approach allows the use of large time steps, keeps practically the second order of accuracy and requires at each time step the amount of calculations proportional to the number of spatial grid points. The performed numerical experiments show computational efficiency of the proposed scheme and accuracy of the predicted atmospheric fields.


Gravity Wave Vertical Mode Atmospheric Field Trajectory Equation Hydrostatic Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Anthes, R.A., Kuo, Y.H., Hsie, E.Y., Low-Nam, S., Bettge, T.W.: Estimation of skill and uncertainty in regional numerical models. Q. J. R. Meteorol. Soc. 115, 763–806 (1989)CrossRefGoogle Scholar
  2. 2.
    Arakawa, A., Suarez, M.J.: Vertical differencing of the primitive equations in sigma coordinates. Mon. Wea. Rev. 111, 34–45 (1983)CrossRefGoogle Scholar
  3. 3.
    Bates, J.R., Moorthi, S., Higgins, R.W.: A global multilevel atmospheric model using a vector semi-Lagrangian finite-difference scheme. Part I: Adiabatic formulation. Mon. Wea. Rev. 121, 244–263 (1993)Google Scholar
  4. 4.
    Bourchtein, A.: Semi-Lagrangian semi-implicit space splitting regional baroclinic atmospheric model. Appl. Numer. Math. 41, 307–326 (2002)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bourchtein, A., Kadychnikov, V.: Well-posedness of the initial value problem for vertically discretized hydrostatic equations. SIAM J. Num. An. 41, 195–207 (2003)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Browning, G.L., Kreiss, H.-O.: Splitting methods for problems with different timescales. Mon. Wea. Rev. 122, 2614–2622 (1994)CrossRefGoogle Scholar
  7. 7.
    Burridge, D.M.: A split semi-implicit reformulation of the Bushby-Timpson 10 level model. Quart. J. Roy. Meteor. Soc. 101, 777–792 (1975)Google Scholar
  8. 8.
    Côté, J., Gravel, S., Methot, A., Patoine, A., Roch, M., Staniforth, A.: The operational CMC-MRB global environmental multiscale (GEM) model. Part I: Design considerations and formulation. Mon. Wea. Rev. 126, 1373–1395 (1998)Google Scholar
  9. 9.
    Douglas, J., Kim, S.: Improved accuracy for locally one-dimensional methods for parabolic equations. Mathematical Models and Methods in Applied Science 11, 1563–1579 (2001)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Douglas, J., Kim, S., Lim, H.: An improved alternating-direction method for a viscous wave equation. In: Chen, Z., Glowinski, R., Kaitai, L. (eds.) Current Trends in Scientific Computing. Contemporary Mathematics, vol. 329, pp. 99–104 (2003)Google Scholar
  11. 11.
    Durran, D.: Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Springer, New York (1999)Google Scholar
  12. 12.
    Hortal, M.: The development and testing of a new two-time-level semi-Lagrangian scheme (SETTLS) in the ECMWF forecast model. Q.J.R.Met.Soc. 128, 1671–1687 (2002)CrossRefGoogle Scholar
  13. 13.
    McDonald, A.: Accuracy of multiply upstream, semi-Lagrangian advective schemes. Mon. Wea. Rev. 112, 1267–1275 (1984)CrossRefGoogle Scholar
  14. 14.
    Pudykiewicz, J., Benoit, R., Staniforth, A.: Preliminary results from a partial LRTAP model based on an existing meteorological forecast model. Atmos.-Ocean 23, 267–303 (1985)Google Scholar
  15. 15.
    Staniforth, A., Côté, J.: Semi-Lagrangian integration schemes for atmospheric models - A review. Mon. Wea. Rev. 119, 2206–2223 (1991)CrossRefGoogle Scholar
  16. 16.
    Temperton, C., Hortal, M., Simmons, A.J.: A two-time-level semi-Lagrangian global spectral model. Q. J. R. Meteorol. Soc. 127, 111–126 (2001)CrossRefGoogle Scholar
  17. 17.
    Yakimiw, E., Robert, A.: Accuracy and stability analysis of a fully implicit scheme for the shallow water equations. Mon. Wea. Rev. 114, 240–244 (1986)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Andrei Bourchtein
    • 1
  • Ludmila Bourchtein
    • 1
  • Maxim Naumov
    • 2
  1. 1.Institute of Physics and MathematicsPelotas State UniversityBrazil
  2. 2.Department of Computer SciencesPurdue UniversityUSA

Personalised recommendations