Computation of Si Nanowire Bandstructures on Parallel Machines Through Domain Decomposition

  • Tao Li
  • Ximeng Guan
  • Zhiping Yu
  • Wei Xue
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3991)


This paper presents a methodology for calculating silicon nanowire (SiNW) bandstructures on parallel machines. A partition scheme is developed through domain decomposition and loading balance is considered for scheduling jobs on machines with different efficiencies. Using sp 3 d 5 s * tight-binding model, the Hamiltonian matrix of the SiNW is constructed and its eigenvalues are extracted with the Implicitly Restarted Arnoldi Method. Parallel calculation performance is tested on identical machines finally and a linear speedup is gained as the number of nodes increases.


Completion Time Domain Decomposition Parallel Machine Message Passing Interface Linear Speedup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cui, Y., Zhong, Z., Wang, D., Wang, W.U., Lieber, C.M.: High Performance Silicon Nanowire Field Effect Transistors. Nano Lett. 3, 149–152 (2003)CrossRefGoogle Scholar
  2. 2.
    Ma, D.D.D., Lee, C.S., Au, F.C.K., Tong, S.Y., Lee, S.T.: Small-Diameter Silicon Nanowire Surfaces. Science, 1874–1876 (2003)Google Scholar
  3. 3.
    Zhao, X., Wei, C., Yang, L., Chou, M.Y.: Quantum Confinement and Electronic Properties of Silicon Nanowires. Phys. Rev. Lett. 92, 236805 (2004)CrossRefGoogle Scholar
  4. 4.
    Ko, Y.J., Shin, M., Lee, S., Park, K.W.: Effects of Atomistic Defects on Coherent Electron Transmission in Si Nanowires: Full Band Calculations. J. Appl. Phys. 89, 374–380 (2001)CrossRefGoogle Scholar
  5. 5.
    Jancu, J.-M., Scholz, R., Beltram, F., Bassani, F.: Empirical spds * Tight-binding Calculation for Cubic Semiconductors: General Method and Material Marameters. Phys. Rev. B. 57, 6493–6507 (1998)CrossRefGoogle Scholar
  6. 6.
    Guan, X., Yu, Z.: Supercell Approach in Tight-Binding Calculation of Si and Ge Nanowire Bandstructures. Chin. Phys. Lett. 22, 2651–2654 (2005)CrossRefGoogle Scholar
  7. 7.
    Snir, M., Otto, S.W., Lederman, S.H., Walker, D.W., Dongarra, J.: MPI The complete Reference. The MIT Press Cambridge, Massachussets (1996)Google Scholar
  8. 8.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. The MIT Press, Massachussets (2001)MATHGoogle Scholar
  9. 9.
    Brucker, P., Knust, S.: Complexity Results of Scheduling Problems,
  10. 10.
    Dessouky, M.I., Lageweg, B.J., Lenstra, J.K., van de Velde, S.L.: Scheduling Identical Jobs on Uniform Parallel Machines. Statist. Neerlandica 44, 115–123 (1990)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Yu, P.Y., Cadona, M.: Fundamentals of Semicondutors: Physics and Materials Properties, 3rd edn. Springer, New York (2001)Google Scholar
  12. 12.
    Lehoucq, R., Maschhof, K.,Sorensen, D., Yang, C.: ARPACK,

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Tao Li
    • 1
  • Ximeng Guan
    • 1
  • Zhiping Yu
    • 1
  • Wei Xue
    • 2
  1. 1.Institute of MicroelectronicsTsinghua UniversityBeijingChina
  2. 2.Department of Computer Science and TechnologyTsinghua UniversityBeijingChina

Personalised recommendations