A New Reconstruction Algorithm in Spline Signal Spaces

  • Chen Zhao
  • Yueting Zhuang
  • Honghua Gan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3991)


In this research letter, we introduce a reconstruction formula in spline signal spaces which is a generalization of former results in [11]. A general improved A-P iterative algorithm is presented. We use the algorithm to show reconstruction of signals from weighted samples and also show that the new algorithm shows better convergence than the old one. The explicit convergence rate of the algorithm is obtained.


Convergence Rate Iterative Algorithm Reconstruction Algorithm Real Sequence Pointwise Estimate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aldroubi, A.: Non-uniform weighted average sampling and reconstruction in shift-invariant and wavelet spaces. Appl. Comput. Harmon. Anal 13, 156–161 (2002)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Aldroubi, A., Feichtinger, H.: Exact iterative reconstruction algorithm for multivate irregular sampled functions in spline-like spaces: The L p theory. Proc. Amer. Math. Soc. 126(9), 2677–2686 (1998)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Aldroubi, A., Gröchenig, K.: Beurling-Landau-type theorems for non-uniform sampling in shift invariant spline spaces. J. Fourier. Anal. Appl 6(1), 93–103 (2000)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Aldroubi, A., Gröchenig, K.: Non-uniform sampling and reconstruction in shift-invariant spaces. SIAM Rev. 43(4), 585–620 (2001)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chen, W., Itoh, S., Shiki, J.: On sampling in shift invariant spaces. IEEE Trans. Information. Theory 48(10), 2802–2810 (2002)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Chui, C.K.: An introduction to Wavelet. Academic Press, New York (1992)Google Scholar
  7. 7.
    Feichtinger, H.G.: Generalized amalgams, with applications to Fourier transform. Can. J. of Math. 42(3), 395–409 (1990)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Goh, S.S., Ong, I.G.H.: Reconstruction of bandlimited signals from irregular samples. Signal. Processing 46(3), 315–329 (1995)MATHCrossRefGoogle Scholar
  9. 9.
    Gröchenig, K.: Localization of frames, Banach frames, and the invertibility of the frame operator, J. Fourier.Anal.Appl 10(2), 105–132 (2004)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Sun, W.C., Zhou, X.W.: Average sampling in spline subspaces. Appl. Math. Letter 15, 233–237 (2002)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Xian, J., Luo, S.P., Lin, W.: Improved A-P iterative algorithm in spline subspaces. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3037, pp. 58–64. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Xian, J., Qiang, X.F.: Non-uniform sampling and reconstruction in weighted multiply generated shift-invariant spaces. Far. East. J. Math. Sci. 8(3), 281–293 (2003)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Chen Zhao
    • 1
  • Yueting Zhuang
    • 1
  • Honghua Gan
    • 1
  1. 1.College of Computer ScienceZhejiang UniversityHangzhouP.R. China

Personalised recommendations