A New Approach for Solving Evolution Problems in Time-Parallel Way

  • Nabil R. Nassif
  • Noha Makhoul Karam
  • Yeran Soukiassian
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3991)


With the advent of massively parallel computers with thousands of processors, a large amount of work has been done during the last decades in order to enable a more effective use of a higher number of processors, by superposing parallelism in time-domain, even though it is known that time-integration is inherently sequential, to parallelism in the space-domain [8]. Consequently, many families of predictor-corrector methods have been proposed, allowing computing on several time-steps concurrently [5], [6]. The aim of our present work is to develop a new parallel-in-time algorithm for solving evolution problems, based on particularities of a rescaling method that has been developed for solving different types of partial and ordinary differential equations whose solutions have a finite existence time [9]. Such method leads to a sliced-time computing technique used to solve independently rescaled models of the differential equation. The determining factor for convergence of the iterative process are the predicted values at the start of each time slice. These are obtained using “ratio-based” formulae. In this paper we extend successfully this method to reaction diffusion problems of the form u t u m +au p , with their solutions having a global existence time when pm≤ 1. The resulting algorithm RaPTI provides perfect parallelism, with convergence being reached after few iterations.


Domain Decomposition Time Slice Homogeneous Dirichlet Boundary Condition Perfect Parallelism Parareal Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Nievergelt, J.: Parallel methods for integration ordinary differential equations. Comm. ACM 7, 731–733 (1964)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Chartier, P., Philippe, B.: A parallel shooting technique for solving dissipative ODE’s. Computing 51(3-4), 209–236 (1993)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Erhel, J., Rault, S.: Algorithme parallèle pour le calcul d’orbites. Springer, Heidelberg (1989)Google Scholar
  4. 4.
    Fayad, D., Nassif, N., Cortas, M.: Rescaling technique for the Numerical computation of blowing-up solutions for semi-linear parabolic equations, Manuscript (2000)Google Scholar
  5. 5.
    Lions, J.L., Maday, Y., Turinici, G.: Résolution d’EDP par un schéma en temps “pararéel”. C.R.Acad.Sci.Paris, t.332, Série 1, 661–668 (2001)Google Scholar
  6. 6.
    Maday, Y., Bal, G.: A parareal time discretization for non-linear pde’s with application to the pricing of an American put. In: Recent developments in Domain Decomposition Methods (Zurich 2002). Lecture Notes in computational Science and Engineering, vol. 23, pp. 189–202. Springer, Heidelberg (2002)Google Scholar
  7. 7.
    Makhoul-Karam N. Résolution numérique d’équations paraboliques semi-linéaires à caractère d’explosion ou d’extinction par des méthodes de re-dimensionnement. Mémoire de DEA en MSI (2002-2003)Google Scholar
  8. 8.
    Farhat, C., Chandesris, M.: Time-decomposed parallel time-integrators. Int. J. Numer. Meth. Engng. 58, 1397–1434 (2003)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Nassif, N.R., Fayad, D., Cortas, M.: Slice-Time Computations with Re-scaling for Blowing-Up Solutions to Initial Value Differential Equations. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2005. LNCS, vol. 3514, pp. 58–65. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Cortas, M.: Méthode de re-dimensionnement (Rescaling technique) pour des équations aux dérivées ordinaires du 1er ordre à caractère explosif. Thèse, Université Bordeaux 1. Janvier (2005)Google Scholar
  11. 11.
    Vanderwalle, S.: PARAREAL in a historical perspective (a review of space-time parallel algorithms). In: The 16th International Conference on Domain Decomposition Methods, NYU 2005. Proceedings (2005)Google Scholar
  12. 12.
    Gander, M., Vanderwalle, S.: On the superlinear and linear convergence of the parareal algorithm. In: the 16th International Conference on Domain Decomposition Methods, NYU 2005. Proceedings (2005)Google Scholar
  13. 13.
    Guibert, D., Tromeur-Dervout, D.: Adaptative Parareal for systems of ODEs. In: the 16th International Conference on Domain Decomposition Methods, NYU 2005. Proceedings (2005)Google Scholar
  14. 14.
    Farhat, C., Cortial, J., Bavestello, H., Dastillung, C.: A time-decomposed time-parallel implicit algorithm for accelerating the solution of second-order hyperbolic problems. Berkley-Stanford computational fest, mai 7 (2005)Google Scholar
  15. 15.
    Arnaout, H., Mneimneh, H.: Y.Soukiassian Parallel Algorithm for Sliced-Time Computation with Re-scaling for Blowing-up Solutions to Initial Value Problems. Master’s Project. American University of Beirut (June 2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Nabil R. Nassif
    • 1
  • Noha Makhoul Karam
    • 2
  • Yeran Soukiassian
    • 3
  1. 1.Mathematics DepartmentAmerican University of BeirutBeirutLebanon
  2. 2.IRISA, Campus Beaulieu, Université de Rennes IRennesFrance
  3. 3.Computer Science DepartmentAmerican University of BeirutBeirutLebanon

Personalised recommendations