Large-Scale Simulations of a Bi-dimensional n-Ary Fragmentation Model

  • Gonzalo Hernandez
  • Luis Salinas
  • Andres Avila
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3991)


A bi-dimensional n-ary fragmentation model is numerically studied by large-scale simulations. Its main assumptions are the existence of random point flaws and a fracture mechanism based on the larger net force. For the 4-ary fragment size distribution it was obtained a power law with exponent 1.0≤ β ≤ 1.15 . The visualizations of the model resemble brittle material fragmentation.


Fragmentation Process Random Initial Condition Fracture Force Fragment Size Distribution Fragment Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abraham, F.: Portrait of a Crack: Fracture Mechanics Using Parallel Molecular Dynamics. IEEE Computational Science and Engineering 4(2), 66–78 (1997)CrossRefGoogle Scholar
  2. 2.
    Aström, J.A., Holian, B.L., Timonen, J.: Universality in Fragmentation. Physical Review Letters 84(14), 3061–3064 (2000)CrossRefGoogle Scholar
  3. 3.
    Aström, J.A., Linna, R.P., Timonen, J., Møller, P.F., Oddershede, L.: Exponential and power-law mass distributions in brittle fragmentation. Physical Review E 70(2), 026104–026110 (2004)CrossRefGoogle Scholar
  4. 4.
    Hernandez, G.: Discrete Model for Fragmentation with Random Stopping. Physica A 300(1-2), 13–24 (2001)MATHCrossRefGoogle Scholar
  5. 5.
    Hernandez, G.: Two-Dimensional Model for Binary Fragmentation Process with Random System of Forces, Random Stopping and Material Resistance. Physica A 323(1), 1–8 (2003)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Krapivsky, P.L., Ben-Nai, E., Grosse, I.: Stable Distributions in Stochastic Fragmentation. Journal of Physics A 37(25), 2863–2880 (2004)MATHCrossRefGoogle Scholar
  7. 7.
    Krapivsky, P.L., Grosse, I., Ben-Nai, E.: Scale invariance and lack of self-averaging in fragmentation. Physical Review E 61(2), R993–R996 (2000)CrossRefGoogle Scholar
  8. 8.
    Lawn, B.R., Wilshaw, T.R.: Fracture of Brittle Solids. Cambridge University Press, Cambridge (1975)Google Scholar
  9. 9.
    Turcotte, D.L.: Fractals and Fragmentation. Journal of Geophysical Research 91, 1921–1926 (1986)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Gonzalo Hernandez
    • 1
    • 2
  • Luis Salinas
    • 3
  • Andres Avila
    • 4
  1. 1.UNAB Escuela de Ingenieria CivilSantiagoChile
  2. 2.UChile Centro de Modelamiento MatematicoSantiagoChile
  3. 3.USM Departamento de InformaticaValparaisoChile
  4. 4.UFRO Departamento de Ingenieria MatematicaTemucoChile

Personalised recommendations