Advertisement

Sliding Free Lagrangian-Eulerian Finite Element Method

  • Junbo Cheng
  • Guiping Zhao
  • Zupeng Jia
  • Yibing Chen
  • Junxia Cheng
  • Shuanghu Wang
  • Wanzhi Wen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3991)

Abstract

People usually use arbitrary Lagrangian-Eulerian method to simulate the multi-phase flowing problems, but some numerical errors may be introduced during remapping. In this paper, sliding free Lagrangian-Eulerian finite element method(SFLEFEM) is developed. In SFLEFEM compressible Eulerian equations for moving mesh are dircretized without Lagrangian step and numerical experiments prove that SFLEFEM is convergent and stable.

Keywords

Finite Element Method Material Interface Density Contour Interface Location Density Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hirt, C.W., Nichols, B.D.: Volume of fluid(VOF) method for the dynamics of free boundary. J. Comput. Phys. 39, 201–225 (1981)MATHCrossRefGoogle Scholar
  2. 2.
    Chen, I.L., Glimm, J.: Front tracking for gas dynamics. J. Comput. Phys. 62, 83–110 (1986)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Osher, S., Sethian, J.A.: Fronts propagating with curvature depend speed: Algorithm based on Hamilton-Jacobi formulation J. Comput. Phys. 79, 12 (1988)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Antannovskii, L.K.: A phase field model of capillavityGoogle Scholar
  5. 5.
    Benson, D.J.: An efficient, accurate, simple ALE method for nonlinear finite element programs, Comm. Pure Appl. Math. 72, 305–350 (1989)MATHGoogle Scholar
  6. 6.
    Von Neumann, Richtmyer, R.D.: A method for the numerical calculation of hydrodynamics shocks. J. Appl. Phys. 21 (1950)Google Scholar
  7. 7.
    Campbell, J., Shashkov, M.: A Tensor Artificial Viscosity using a Mimetic Finite Difference Algorithm, Los Alamos NM 87545, LA-UR-00-2900 (April 2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Junbo Cheng
    • 1
  • Guiping Zhao
    • 1
  • Zupeng Jia
    • 1
  • Yibing Chen
    • 1
  • Junxia Cheng
    • 1
  • Shuanghu Wang
    • 1
  • Wanzhi Wen
    • 1
  1. 1.Institute of applied physics and computational mathematicsBeijingChina

Personalised recommendations